\(\left(n^2-1\right)^{2016}\) cho n là?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

Có: \(\left(n^2-1\right)^{2016}=n^{2^{2016}}-1^{2016}\)

Có : \(n⋮n\Rightarrow n^{2^{2016}}⋮n\)

\(\Rightarrow1^{2016}=1\)

\(\Rightarrow\left(n^2-1\right)^{2016}\) chia cho n dư 1

23 tháng 8 2016

ủa (n^2 -1)^2016 sao bằng n^2^2016 -1^2016 được

20 tháng 12 2016

1

17 tháng 1 2017

Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)

Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1

Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1

15 tháng 10 2017

a)ta có:

\(f\left(x\right):\left(x+1\right)\: dư\: 6\Rightarrow f\left(x\right)-6⋮\left(x+1\right)\\ hay\: 1-a+b-6=0\\ \Leftrightarrow b-a-5=0\Leftrightarrow b-a=5\left(1\right)\)

tương tự: \(2^2+2a+b-3=0\\ 2a+b=-1\left(2\right)\)

từ (1) và(2) => \(\left\{{}\begin{matrix}b-a=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

15 tháng 10 2017

Câu a :

Theo đề bài ta có hệ phương trình :

\(\left\{{}\begin{matrix}f\left(-1\right)=1-a+b=6\\f\left(2\right)=4+2a+b=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-a+b=5\\2a+b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\)

Vậy đa thức \(f\left(x\right)=x^2-2x+3\)

NV
29 tháng 10 2019

\(P\left(x\right)=\left(x-2\right)Q\left(x\right)+1\) \(\Rightarrow P\left(2\right)=1\)

\(P\left(x\right)=\left(x+1\right).R\left(x\right)+2\Rightarrow P\left(-1\right)=2\)

\(P\left(x\right)=\left(x^2-x-2\right)\left(2x-1\right)+ax+b\) (1)

Thay \(x=2\) vào (1): \(P\left(2\right)=2a+b\Rightarrow2a+b=1\)

Thay \(x=-1\) vào (1): \(P\left(-1\right)=-a+b\Rightarrow-a+b=2\)

\(\Rightarrow\left\{{}\begin{matrix}2a+b=1\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=\frac{5}{3}\end{matrix}\right.\)

\(\Rightarrow P\left(x\right)=\left(x^2-x-2\right)\left(2x-1\right)-\frac{1}{3}x+\frac{5}{3}\)

NV
2 tháng 1 2019

\(f\left(x\right)\) chia \(x+1\) dư 4 \(\Rightarrow f\left(x\right)=\left(x+1\right).P\left(x\right)+4\)

\(f\left(-1\right)=\left(-1+1\right)P\left(x\right)+4=4\)

Do \(\left(x+1\right)\left(x^2+1\right)\) là đa thức bậc 3 \(\Rightarrow\) phần dư của phép chia \(f\left(x\right)\) cho \(\left(x+1\right)\left(x^2+1\right)\) là bậc 2 có dạng \(ax^2+bx+c\)

\(\Rightarrow f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+ax^2+bx+c\)(1)

\(f\left(-1\right)=a-b+c=4\) (2)

Biến đổi biểu thức (1):

\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(f\left(x\right)=\left(x^2+1\right)\left[\left(x+1\right).Q\left(x\right)+a\right]+bx+c-a\)

\(\Rightarrow f\left(x\right)\) chia \(x^2+1\)\(bx+c-a\)

\(\Rightarrow bx+c-a=2x+3\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)

Kết hợp (2) ta được: \(\left\{{}\begin{matrix}b=2\\c-a=3\\a-b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=2\\c=\dfrac{9}{2}\end{matrix}\right.\)

Vậy phần dư cần tìm là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)

2 tháng 1 2019

Theo Bơdu, ta có:

\(f\left(x\right):\left(x+1\right)\) dư 4

\(\Rightarrow f\left(-1\right)=4\)

Vì đa thức chia \(\left(x+1\right)\left(x^2+1\right)\) có bậc 3 nên đa thức dư có bậc \(\le2\). Đặt đa thức dư có dạng \(ax^2+bx+c\)

Gọi \(P\left(x\right)\) là đa thức thương. Ta có:

\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+bx+c\)

\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+a-a+bx+c\)

\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(=\left(x^2+1\right)\left[P\left(x\right).\left(x+1\right)+a\right]+bx-a+c\)

\(f\left(x\right):\left(x^2+1\right)\)\(2x+3\)

\(\Rightarrow bx+c-a=2x+3\)

\(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)

Lại có: \(f\left(-1\right)=ax^2+bx+c=4\)

\(\Leftrightarrow a-b+c=4\Leftrightarrow a+c-2=4\)

\(\Leftrightarrow a+c=6\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=\dfrac{9}{2}\end{matrix}\right.\)

Vậy đa thức dư là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.Link : http://olm.vn/hoi-dap/question/715065.htmlThấy Online Math chọn thì không nỡ bỏ quên :vĐề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần "...
Đọc tiếp

Thực ra mình lập câu hỏi này để giải một bài toán mình từng hỏi cho mọi người tham khảo, thì có một bạn nhờ mình giải.

Link : http://olm.vn/hoi-dap/question/715065.html

Thấy Online Math chọn thì không nỡ bỏ quên :v

Đề :  Chia số \(2013^{2016}\) thành tổng các số tự nhiên.

Tìm số dư của tổng lập phương các số tự nhiên đó cho 6.

Bài này chủ yếu là đánh lừa các bạn, vì không rõ ràng ở phần " tổng các số tự nhiên", chúng ta chẳng biết tổng của các số nào cả, có rất nhiều cách chia như vậy. Với những bài có dạng như này, mẹo là các bạn đưa về dạng tổng quá, sẽ dễ dàng chứng minh được.

Cách giải :

Đặt \(2013^{2016}=a_1+a_2+...+a_n\)

Tổng lập phương các số tự nhiên này là :

\(a_1^3+a_2^3+...+a_n^3\)

Có :

\(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\)

\(=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\)

\(=a_1\left(a_1^2-1\right)+a_2\left(a_2^2-1\right)+...+a_n\left(a_n^2-1\right)\)

\(=\left(a_1-1\right)a\left(a_1+1\right)+\left(a_2-1\right)a_2\left(a_2+1\right)+...+\left(a_n-1\right)a_n\left(a_n+1\right)\)

Thấy \(\left(a_1-1\right)a\left(a_1+1\right);\left(a_2-1\right)a_2\left(a_2+1\right);...;\left(a_n-1\right)a_n\left(a_n+1\right)\) là tích 3 số tự nhiên liên tiếp nên dễ dàng chứng minh nó chia hết cho 6.

Do đó \(a_1^3+a_2^3+...+a_n^3-\left(a_1+a_2+...+a_n\right)\) chia hết cho 6, tức \(a_1^3+a_2^3+...+a_n^3\) có cùng số dư với \(2013^{2016}\left(=a_1+a_2+...+a_n\right)\) khi chia cho 6.

Các bạn tự tìm số dư, vì phần còn lại khá đơn giản :)

0
5 tháng 7 2016

xem lại câu a nhé bạn

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

Vì $f(x)$ chia $x-3$ dư $2$, $f(x)$ chia $x+4$ dư $9$ nên $f(3)=2; f(-4)=9$

Giả sử $f(x)$ chia $x^2+x-12$ được đa thức dư là $ax+b$

Khi đó: $f(x)=(x^2+x-12)(x^2+3)+ax+b$

$f(3)=(3^2+3-12)(3^2+3)+3a+b$

$\Leftrightarrow 2=3a+b(1)$

$f(-4)=[(-4)^2-4-12][(-4)^2+3)]-4a+b$

$\Leftrightarrow 9=-4a+b(2)$

Từ $(1);(2)\Rightarrow a=-1; b=5$

$f(x)=(x^2+x-12)(x^2+3)-x+5=x^4+x^3-9x^2+2x-31$

11 tháng 11 2017

Gọi a(x) b(x) lần lượt là các thương của f(x) cho x-1 và x+2

f(x)=(x-1)a(x) + 4

f(1)=4

f(x)=(x+2)b(x) + 1

f(-2)=1

(x-1)(x+2) có bậc là 2=) đa thức dư có dạng cx+d

f(1)=(1-1)(1+2).5x2 +cx+d

     =c+d=4

f(-2)=(-2-1)(-2+2).5x2 +c.(-2)+d

       =d-2c=1

=)c+d-(d-2c)=c+d-d+2c=3c=3

=)c=1

=)d=3

Vậy đa thức dư của f(x) chia cho(x-1)(x+2) có dạng 1x+3 hay x+3