Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)
Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1
Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1
1,a chia 8 dư 3 =>a=8k+3
b chia 8 dư 5 =>b=8k+5
=>ab=(8k+3)(8k+5)=64k2+40k+24k+15=64k2+64k+15 chia 8 dư 7
2, là đường cao của t/g ABC
3, đề là gì
\(P\left(x\right)=\left(x-2\right)Q\left(x\right)+1\) \(\Rightarrow P\left(2\right)=1\)
\(P\left(x\right)=\left(x+1\right).R\left(x\right)+2\Rightarrow P\left(-1\right)=2\)
\(P\left(x\right)=\left(x^2-x-2\right)\left(2x-1\right)+ax+b\) (1)
Thay \(x=2\) vào (1): \(P\left(2\right)=2a+b\Rightarrow2a+b=1\)
Thay \(x=-1\) vào (1): \(P\left(-1\right)=-a+b\Rightarrow-a+b=2\)
\(\Rightarrow\left\{{}\begin{matrix}2a+b=1\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=\frac{5}{3}\end{matrix}\right.\)
\(\Rightarrow P\left(x\right)=\left(x^2-x-2\right)\left(2x-1\right)-\frac{1}{3}x+\frac{5}{3}\)
Có: \(\left(n^2-1\right)^{2016}=n^{2^{2016}}-1^{2016}\)
Có : \(n⋮n\Rightarrow n^{2^{2016}}⋮n\)
\(\Rightarrow1^{2016}=1\)
\(\Rightarrow\left(n^2-1\right)^{2016}\) chia cho n dư 1
ủa (n^2 -1)^2016 sao bằng n^2^2016 -1^2016 được