\(\left(x\right)\) chia cho \(x+1\) thì dư 4, chia c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 1 2019

\(f\left(x\right)\) chia \(x+1\) dư 4 \(\Rightarrow f\left(x\right)=\left(x+1\right).P\left(x\right)+4\)

\(f\left(-1\right)=\left(-1+1\right)P\left(x\right)+4=4\)

Do \(\left(x+1\right)\left(x^2+1\right)\) là đa thức bậc 3 \(\Rightarrow\) phần dư của phép chia \(f\left(x\right)\) cho \(\left(x+1\right)\left(x^2+1\right)\) là bậc 2 có dạng \(ax^2+bx+c\)

\(\Rightarrow f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+ax^2+bx+c\)(1)

\(f\left(-1\right)=a-b+c=4\) (2)

Biến đổi biểu thức (1):

\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right).Q\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(f\left(x\right)=\left(x^2+1\right)\left[\left(x+1\right).Q\left(x\right)+a\right]+bx+c-a\)

\(\Rightarrow f\left(x\right)\) chia \(x^2+1\)\(bx+c-a\)

\(\Rightarrow bx+c-a=2x+3\) \(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)

Kết hợp (2) ta được: \(\left\{{}\begin{matrix}b=2\\c-a=3\\a-b+c=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=2\\c=\dfrac{9}{2}\end{matrix}\right.\)

Vậy phần dư cần tìm là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)

2 tháng 1 2019

Theo Bơdu, ta có:

\(f\left(x\right):\left(x+1\right)\) dư 4

\(\Rightarrow f\left(-1\right)=4\)

Vì đa thức chia \(\left(x+1\right)\left(x^2+1\right)\) có bậc 3 nên đa thức dư có bậc \(\le2\). Đặt đa thức dư có dạng \(ax^2+bx+c\)

Gọi \(P\left(x\right)\) là đa thức thương. Ta có:

\(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+bx+c\)

\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+ax^2+a-a+bx+c\)

\(=\left(x+1\right)\left(x^2+1\right)P\left(x\right)+a\left(x^2+1\right)+bx+c-a\)

\(=\left(x^2+1\right)\left[P\left(x\right).\left(x+1\right)+a\right]+bx-a+c\)

\(f\left(x\right):\left(x^2+1\right)\)\(2x+3\)

\(\Rightarrow bx+c-a=2x+3\)

\(\Rightarrow\left\{{}\begin{matrix}b=2\\c-a=3\end{matrix}\right.\)

Lại có: \(f\left(-1\right)=ax^2+bx+c=4\)

\(\Leftrightarrow a-b+c=4\Leftrightarrow a+c-2=4\)

\(\Leftrightarrow a+c=6\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=\dfrac{9}{2}\end{matrix}\right.\)

Vậy đa thức dư là \(\dfrac{3}{2}x^2+2x+\dfrac{9}{2}\)

9 tháng 2 2017

Ta có \(F\left(x\right)=g\left(x\right).\left(x+1\right)+4\)

Giả sử \(g\left(x\right)=r\left(x\right).\left(x^2+1\right)+ax+b\)

Suy ra \(F\left(x\right)=r\left(x\right).\left(x+1\right)\left(x^2+1\right)+\left(ax+b\right)\left(x+1\right)+4\)

Đa thức dư là \(h\left(x\right)=\left(ax+b\right)\left(x+1\right)+4\) ta có \(h\left(x\right)=ax^2+\left(a+b\right)x+\left(b+4\right)\)

Theo giả thiết \(h\left(x\right)\) chia \(\left(x^2+1\right)\) dư \(2x+3\)

\(h\left(x\right)=a\left(x^2+1\right)+\left(a+b\right)x+\left(b-a+4\right)\)

\(\Rightarrow\)\(\hept{\begin{cases}a+b=2\\b-a+4=3\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{3}{2}\\b=\frac{1}{2}\end{cases}}\)

Vậy đa thức dư là \(h\left(x\right)=\left(\frac{3}{2}x+\frac{1}{2}\right)\left(x+1\right)+4\)

9 tháng 2 2017

Ta có f(x) chia cho x + 1 dư 4 nên theo bê-du ta có: f(-1) = 4 (1)

Khi chi f(x) cho (x + 1)(x2 + 1) thì phần dư phải là đa thức bậc 2 hay

f(x) = (x + 1)(x2 + 1)Q(x) + ax2 + bx + c

= (x + 1)(x2 + 1)Q(x) + a(x2 + 1)+ bx + c - a

= (x2 + 1)[(x + 1)Q(x) + a] + bx + c - a (2)

Mà f(x) chia cho x2 + 1 dư 2x + 3 (3)

Từ (1), (2), (3) ta suy ra hệ

\(\hept{\begin{cases}b=2\\c-a=3\\a-b+c=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=2\\a=\frac{3}{2}\\c=\frac{9}{2}\end{cases}}\)

Vậy đa thức dư cần tìm là: \(\frac{3}{2}x^2+2x+\frac{9}{2}\)

28 tháng 10 2019

Áp dụng định lý Bezout ta có:

\(P\left(x\right)\)chia cho x-2 dư 1 \(\Rightarrow P\left(2\right)=1\left(1\right)\)

\(P\left(x\right)\)chia cho x+1 dư 2 \(\Rightarrow P\left(-1\right)=2\left(2\right)\)

Vì \(P\left(x\right)\)chia cho \(x^2-x-2\)thì được thương 2x-1 và còn dư

\(\Rightarrow P\left(x\right)=\left(x^2-x-2\right)\left(2x-1\right)+ax+b\)

                  \(=\left(x^2+x-2x-2\right)\left(2x-1\right)+ax+b\)

                   \(=\left[x\left(x+1\right)-2\left(x+1\right)\right]\left(2x-1\right)+ax+b\)

                   \(=\left(x+1\right)\left(x-2\right)\left(2x-1\right)+ax+b\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)và \(\left(3\right)\)\(\Rightarrow\hept{\begin{cases}-a+b=2\\2a+b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{-1}{3}\\b=\frac{5}{3}\end{cases}\left(4\right)}\)

Thay (4) vào (3) ta được:

\(P\left(x\right)=\left(x+1\right)\left(x-2\right)\left(2x-1\right)-\frac{1}{3}x+\frac{5}{3}\)

20 tháng 12 2019

Áp dụng định lý Bezout ta có:
\(f\left(x\right)\)chia hết cho \(2x-1\Rightarrow f\left(x\right)=\left(2x-1\right)q\left(x\right)\)

                                                 \(\Rightarrow f\left(\frac{1}{2}\right)=0\left(1\right)\)

\(f\left(x\right)\)chia cho \(x-2\)dư 6\(\Rightarrow f\left(x\right)=\left(x-2\right)q\left(x\right)+6\)

                                                  \(\Rightarrow f\left(2\right)=6\left(2\right)\)

Vì \(f\left(x\right)\)chia cho \(2x^2-5x+2\)được thương là \(x+2\)và còn dư nên

\(f\left(x\right)=\left(2x^2-5x+2\right)\left(x+2\right)+ax+b\)

         \(=\left(2x^2-4x-x+2\right)\left(x+2\right)+ax+b\)

         \(=\left[2x\left(x-2\right)-\left(x-2\right)\right]\left(x+2\right)+ax+b\)

        \(=\left(x-2\right)\left(2x-1\right)\left(x+2\right)+ax+b\)Kết hợp với (1) và (2) ta được:
\(\hept{\begin{cases}\frac{1}{2}a+b=0\\2a+b=6\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=4\\b=-2\end{cases}}\)

Vạy \(f\left(x\right)=\left(2x^2-5x+2\right)\left(x+2\right)+4x-2\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2020

Lời giải:

Vì $f(x)$ chia $x-3$ dư $2$, $f(x)$ chia $x+4$ dư $9$ nên $f(3)=2; f(-4)=9$

Giả sử $f(x)$ chia $x^2+x-12$ được đa thức dư là $ax+b$

Khi đó: $f(x)=(x^2+x-12)(x^2+3)+ax+b$

$f(3)=(3^2+3-12)(3^2+3)+3a+b$

$\Leftrightarrow 2=3a+b(1)$

$f(-4)=[(-4)^2-4-12][(-4)^2+3)]-4a+b$

$\Leftrightarrow 9=-4a+b(2)$

Từ $(1);(2)\Rightarrow a=-1; b=5$

$f(x)=(x^2+x-12)(x^2+3)-x+5=x^4+x^3-9x^2+2x-31$

NV
29 tháng 10 2019

\(P\left(x\right)=\left(x-2\right)Q\left(x\right)+1\) \(\Rightarrow P\left(2\right)=1\)

\(P\left(x\right)=\left(x+1\right).R\left(x\right)+2\Rightarrow P\left(-1\right)=2\)

\(P\left(x\right)=\left(x^2-x-2\right)\left(2x-1\right)+ax+b\) (1)

Thay \(x=2\) vào (1): \(P\left(2\right)=2a+b\Rightarrow2a+b=1\)

Thay \(x=-1\) vào (1): \(P\left(-1\right)=-a+b\Rightarrow-a+b=2\)

\(\Rightarrow\left\{{}\begin{matrix}2a+b=1\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=\frac{5}{3}\end{matrix}\right.\)

\(\Rightarrow P\left(x\right)=\left(x^2-x-2\right)\left(2x-1\right)-\frac{1}{3}x+\frac{5}{3}\)