Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của trần như - Toán lớp 7 - Học toán với OnlineMath
Bài 1 em tham khảo tại link trên nhé.
+) Nhận xét: Với n thuộc N ta có : n3 - n = n(n2 - 1) = n.(n - 1).(n + 1)
n - 1; n ; n + 1 là 3 số tự nhiên liên tiếp nên tích n(n-1).(n+1) chia hết cho 6 => n3 - n chia hết cho 6
Xét S - N = (n13+n23+...+nk3 ) - (n1+n2+n3+...+nk) = (n13 - n1) + (n23 - n2) + ...+ (nk3 - nk)
từ nhận xét trên => n13 - n1 chia hết cho 6; n23 - n2 chia hết cho 6 ;...; nk3 - nk chia hết cho 6
=> S - N chia hết cho 6
=> S và N có cùng số dư khi chia cho 6
Xét N = 20152016 chia cho 6
Có: 2015 đồng dư với 5 (mod 6)
=> 20152 đồng dư với 52 (mod 6); 52 đồng dư với 1 (mod 6)
=> 20152 đòng dư với 1 (mod 6)
=> 20152016 = (20152)1008 đồng dư với 11008 = 1(mod 6)
=> N chia cho 6 dư 1 => S chia cho 6 dư 1
A= 3n+3+3n+1+2n+2+2n+1
A= (3n+3+3n+1) + (2n+2+2n+1)
A= 3n(33+3) + 2n(22+2)
A= 3n.(27+3) + 2n(4+2)
A= 3n.30 + 2n.6
A=3n.5.6 + 2n.6
A= (3n.5+2n).6\(⋮\)6 (đpcm)
Tự kết luận nha :))
\(A=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)
\(\Rightarrow A=\left(3^{n+3}+3^{n+1}\right)+\left(2^{n+3}+2^{n+2}\right)\)
\(\Rightarrow A=\left(3^n\times3^3+3^n\times3^1\right)+\left(2^n\times2^3+2^n\times2^2\right)\)
\(\Rightarrow A=\left(3^n\times27+3^n\times3\right)+\left(2^n\times8+2^n\times4\right)\)
\(\Rightarrow A=3^n\times\left(27+3\right)+2^n\times\left(8+4\right)\)
\(\Rightarrow A=3^n\times30+2^n\times12\)
Vì \(30⋮6\) nên \(3^n\times30⋮6\) \(\left(1\right)\)
Vì \(12⋮6\) nên \(2^n\times12⋮6\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow3^n\times30+2^n\times12⋮6\) \(\Rightarrow A⋮6\) \(\Rightarrow\) Số dư của \(A\) khi chia cho \(6\) là \(0\).
Vậy số dư của \(A\) khi chia cho \(6\) là \(0\) .
Bằng 0