Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt x^3=t ( t thuộc Z) ta có:
2t^2-2ty+y^2=64 =>4t^2-4ty+2y^2=128<=> (2t-y)^2+y^2=128 (*)
Các số chính phương chỉ có thể tận cùng là 0;1;4;5;6;9 .Theo (*) tổng 2 số chính phương tận cùng bởi 8, nên 2 số đó có cùng tận cùng là 4. Mặt khác tổng 2 số chính phương này bằng 128 nên 2 số chính phương này bằng nhau và bằng 64, nên:
- (2t-y)^2=64
- y^2=64
=>
- (2t-y)^2=64
- y= -8 hoặc 8
* Với y=8 thì (2t-8)^2=64
=>
- 2t-8=8 =>t=8=>x=2
- 2t-8=-8=>t=0 =>x=0
* Với y=-8 thì (2t+8)^2=64
=>
- 2t+8=8 =>t=0 =>x=0
- 2t+8=-8=>t=8 => x=2
vậy có 4 cặp (x;y) =(2;8);(0;8);(0;-8);(-2;-8)
Đồng ý kết bạn đi
\(\left\{{}\begin{matrix}y=5-mx\\2x-5+mx=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=5-mx\\x\left(m+2\right)=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=5-mx\\x=\dfrac{3}{m+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=5-m.\dfrac{3}{m+2}\\x=\dfrac{3}{m+2}\end{matrix}\right.\)
Ta co : xo+yo=1
=> 5-\(\dfrac{3m}{m+2}+\dfrac{3}{m+2}=1\)
=> \(\dfrac{5.\left(m+2\right)-3m+3}{m+2}=1\)
=> 5m+10-3m+3=m+2
=> 2m-m=2-13
=> m=-11
\(\left\{{}\begin{matrix}mx+y=5\left(1\right)\\2x-y=-2\left(2\right)\end{matrix}\right.\)
từ (1) ta có y=5-mx(3)
thế vào (2) ta có 2x-5+mx=-2\(\Leftrightarrow\) (2+m)x=3\(\Leftrightarrow\)x=\(\dfrac{3}{2+m}\)(4)
thế (4) vào (3) ta có
y=5-m\(\dfrac{3}{2+m}\)=\(\dfrac{10+2m}{2+m}\)
vậy hệ có nghiệm duy nhất là(\(\dfrac{3}{2+m}\);\(\dfrac{10+2m}{2+m}\))
mà x+y=1
\(\Rightarrow\)\(\dfrac{3}{2+m}+\dfrac{10+2m}{2+m}=1\)\(\Leftrightarrow\)m=-11
vậy m=-11
Lấy pt 1 cộng vế với vế của pt 2 ta được
\(2x+y+x-y=m+2+m\Leftrightarrow3x=2m+2\Leftrightarrow x=\dfrac{2m+2}{3}\)
từ pt 2 ta suy ra \(y=\dfrac{-m+2}{3}\)
Để hpt có nghiệm \(x_0,y_0\) thoả mãn đk đề bài thì \(\dfrac{-m+2}{3}+\dfrac{2m+2}{3}=3\Leftrightarrow\dfrac{m+4}{3}=3\Leftrightarrow m=5\)
Vậy ..........
\(\left\{{}\begin{matrix}mx+y=5\\2x-y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)x=3\\2x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{m+2}\\\frac{6}{m+2}-y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{m+2}\\y=\frac{10+2m}{m+2}\end{matrix}\right.\)
\(\Rightarrow x+y=\frac{3}{m+2}+\frac{10+2m}{m+2}=\frac{13+2m}{m+2}\)
\(\Leftrightarrow\frac{13+2m}{m+2}=1\Leftrightarrow13+2m=m+2\)
\(\Leftrightarrow m=-11\)
1) \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}=1\left(ĐK:x\ne0\right)\)
Đặt: \(\sqrt{2x^2+9}=a\left(a\ge0\right)\)
\(\Leftrightarrow2x^2+9=a^2\Leftrightarrow9=a^2-2a^2\)
Khi đó pt đã cgo trở rhanhf:
\(\frac{a^2-2x^2}{x^2}+\frac{2x}{a}=1\)
\(\Leftrightarrow\left(\frac{a}{x}\right)^2-2+\frac{2x}{a}-1=0\)
\(\Leftrightarrow\left(\frac{a}{x}\right)^2+\frac{2x}{a}-3=0\) (*)
Đặt: \(\frac{a}{x}=b\) khi đó (*) trở thành:
\(b^2+\frac{2}{b}-3=0\)
\(\Leftrightarrow b^3+2-3b=0\)
\(\Leftrightarrow\left(b^3-b\right)-\left(2b-2\right)=0\)
\(\Leftrightarrow b\left(b-1\right)\left(b+1\right)-2\left(b-1\right)=0\)
\(\Leftrightarrow\left(b-1\right)\left(b^2+b-2\right)=0\)
\(\Leftrightarrow\left(b-1\right)^2\left(b+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}b-1=0\\b+2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}b=1\\b=-2\end{array}\right.\)
Với: \(b=1\) ta có:
\(\frac{a}{x}=1\Leftrightarrow a=x\Leftrightarrow\sqrt{2x^2+9}=x\Leftrightarrow2x^2+9=x^2\Leftrightarrow x^2+9=0\left(loai\right)\)
Với: \(b=-2\) ta có:
\(\frac{a}{x}=-2\)
\(\Leftrightarrow a=-2x\)
\(\Leftrightarrow\sqrt{2x^2+9}=-2x\)
\(\Leftrightarrow2x^2+9=4x^2\)
\(\Leftrightarrow2x^2=9\)
\(\Leftrightarrow x^2=\frac{9}{2}\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{3}{\sqrt{2}}\\x=-\frac{3}{\sqrt{2}}\end{array}\right.\)
Thử lại ta thấy: \(x=\frac{3}{\sqrt{2}}\left(ktm\right);x=-\frac{3}{\sqrt{x}}\left(tm\right)\)
Vaayk pt đã cho có nhgieemj là \(x=-\frac{3}{\sqrt{2}}\)
cái này trong violympic nè hình như la có 3 cạp hay sao ý ko nhớ lắm
217737