K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2022

phương trình j

30 tháng 1 2022

phương trình nào vậy bn?

23 tháng 12 2023

b:

ĐKXĐ: \(\left\{{}\begin{matrix}cosx< >0\\sinx< >0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< >\dfrac{\Omega}{2}+k\Omega\\x\ne k\Omega\end{matrix}\right.\)

=>\(x\ne\dfrac{\Omega}{2}+\dfrac{k\Omega}{2}\)

 \(\dfrac{1}{cosx}+\dfrac{\sqrt{3}}{sinx}=2\cdot sin\left(x+\dfrac{\Omega}{3}\right)\)

=>\(\dfrac{sinx+\sqrt{3}\cdot cosx}{cosx\cdot sinx}=2\cdot sin\left(x+\dfrac{\Omega}{3}\right)\)

=>\(\dfrac{sinx+\sqrt{3}\cdot cosx}{cosx\cdot sinx}=2\cdot\left[sinx\cdot\cos\dfrac{\Omega}{3}+sin\left(\dfrac{\Omega}{3}\right)\cdot cosx\right]\)

=>\(\dfrac{sinx+\sqrt{3}\cdot cosx}{cosx\cdot sinx}=2\cdot\left(\dfrac{1}{2}\cdot sinx+\dfrac{\sqrt{3}}{2}\cdot cosx\right)\)

=>\(\left(sinx+\sqrt{3}\cdot cosx\right)\left(\dfrac{1}{cosx\cdot sinx}-1\right)=0\)

=>\(2\cdot\left(sinx\cdot\dfrac{1}{2}+\dfrac{\sqrt{3}}{2}\cdot cosx\right)\cdot\left(\dfrac{2}{2\cdot sinx\cdot cosx}-1\right)=0\)

=>\(2\cdot sin\left(x+\dfrac{\Omega}{3}\right)\cdot\left(\dfrac{2}{sin2x}-1\right)=0\)

=>\(\left[{}\begin{matrix}sin\left(x+\dfrac{\Omega}{3}\right)=0\\\dfrac{2}{sin2x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\Omega}{3}=k\Omega\\sin2x=2\left(loại\right)\end{matrix}\right.\)

=>\(x=-\dfrac{\Omega}{3}+k\Omega\)

23 tháng 12 2023

:)) t vời

3 tháng 12 2019

Đáp án D

6 tháng 10 2016

câu 1:xét sinx=o

xét sinx khác 0

chia phương trình cho cos3x

ta được 1 phương trình mới:

4+3tanx-\(\frac{1}{sin^2x}\)-tan3x=0

<=>4+3tanx-(1+cot2x)-tan3x=0

<=>4+3tanx-1-\(\frac{1}{tan^2x}\)-tan3x=o

nhân cho tan2x ta được 1 phương trình bậc 5 với tanx

24 tháng 10 2021

a, \(cos\left(x-\dfrac{\pi}{3}\right)-sin\left(x-\dfrac{\pi}{3}\right)=1\)

\(\Leftrightarrow\sqrt{2}cos\left(x-\dfrac{\pi}{3}-\dfrac{\pi}{4}\right)=1\)

\(\Leftrightarrow cos\left(x-\dfrac{7\pi}{12}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow x-\dfrac{7\pi}{12}=\pm\dfrac{\pi}{4}+k2\pi\)

...

24 tháng 10 2021

b, \(\sqrt{3}sin2x+2cos^2x=2sinx+1\)

\(\Leftrightarrow\sqrt{3}sin2x+2cos^2x-1=2sinx\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x+\dfrac{1}{2}cos2x=sinx\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{6}\right)=sinx\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=x+k2\pi\\2x+\dfrac{\pi}{6}=\pi-x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{18}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

13 tháng 3 2019

NV
19 tháng 9 2021

a.

ĐKXĐ: \(x\ne\dfrac{\pi}{2}+k\pi\)

Chia 2 vế cho cosx:

\(tanx+1=\dfrac{1}{cos^2x}\)

\(\Rightarrow tanx+1=1+tan^2x\)

\(\Rightarrow\left[{}\begin{matrix}tanx=0\\tanx=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{4}+k\pi\end{matrix}\right.\)

NV
19 tháng 9 2021

c.

\(\Leftrightarrow2sin2x+2sin^2x=1\)

\(\Leftrightarrow2sin2x=1-2sin^2x\)

\(\Leftrightarrow2sin2x=cos2x\)

\(\Rightarrow tan2x=\dfrac{1}{2}\)

\(\Rightarrow2x=arctan\left(\dfrac{1}{2}\right)+k\pi\)

\(\Rightarrow x=\dfrac{1}{2}arctan\left(\dfrac{1}{2}\right)+\dfrac{k\pi}{2}\)

20 tháng 9 2016

đề đúng không vậy

5 tháng 9 2021

1.

\(sin^3x+cos^3x=1-\dfrac{1}{2}sin2x\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)=1-sinx.cosx\)

\(\Leftrightarrow\left(1-sinx.cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx.cosx=1\\sinx+cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=2\left(vn\right)\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\pi-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

5 tháng 9 2021

2.

\(\left|cosx-sinx\right|+2sin2x=1\)

\(\Leftrightarrow\left|cosx-sinx\right|-1+2sin2x=0\)

\(\Leftrightarrow\left|cosx-sinx\right|-\left(cosx-sinx\right)^2=0\)

\(\Leftrightarrow\left|cosx-sinx\right|\left(1-\left|cosx-sinx\right|\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\\left|cosx-sinx\right|=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=k\pi\\cos^2x+sin^2x-2sinx.cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\1-sin2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\sin2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)