Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Dễ thấy cosx = 0 không thỏa mãn phương trình đã cho nên chiaw phương trình cho cos2x ta được phương trình tương đương 2tan2x + tanx - 3 = 0.
Đặt t = tanx thì phương trình này trở thành
2t2 + t - 3 = 0 ⇔ t ∈ {1 ; }.
Vậy
b) Thay 2 = 2(sin2x + cos2x), phương trình đã cho trở thành
3sin2x - 4sinxcosx + 5cos2x = 2sin2x + 2cos2x
⇔ sin2x - 4sinxcosx + 3cos2x = 0
⇔ tan2x - 4tanx + 3 = 0
⇔
⇔ x = + kπ ; x = arctan3 + kπ, k ∈ Z.
c) Thay sin2x = 2sinxcosx ; = (sin2x + cos2x) vào phương trình đã cho và rút gọn ta được phương trình tương đương
sin2x + 2sinxcosx - cos2x = 0 ⇔ tan2x + 4tanx - 5 = 0 ⇔
⇔ x = + kπ ; x = arctan(-5) + kπ, k ∈ Z.
d) 2cos2x - 3√3sin2x - 4sin2x = -4
⇔ 2cos2x - 3√3sin2x + 4 - 4sin2x = 0
⇔ 6cos2x - 6√3sinxcosx = 0 ⇔ cosx(cosx - √3sinx) = 0
⇔
\(\Leftrightarrow\left(sin^4x+cos^4x\right)^2-2\left(sinx.cosx\right)^4=\frac{17}{16}cos^22x\)
\(\Leftrightarrow\left[\left(sin^2x+cos^2x\right)^2-2\left(sinx.cosx\right)^2\right]^2-2\left(\frac{1}{2}sin2x\right)^4=\frac{17}{16}cos^22x\)
\(\Leftrightarrow\left(1-\frac{1}{2}sin^22x\right)^2-\frac{1}{8}sin^42x=\frac{17}{16}cos^22x\)
\(\Leftrightarrow\frac{1}{8}sin^42x-sin^22x+1=\frac{17}{16}\left(1-sin^22x\right)\)
\(\Leftrightarrow2sin^42x+sin^22x-1=0\)
\(\Leftrightarrow\left(sin^22x+1\right)\left(2sin^22x-1\right)=0\)
\(\Leftrightarrow2sin^22x-1=0\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
\(\Leftrightarrow sin8x-\sqrt{2}cos8x=cos6x-\sqrt{2}sin6x\)
\(\Leftrightarrow\dfrac{1}{\sqrt{3}}sin8x-\dfrac{\sqrt{2}}{\sqrt{3}}cos8x=\dfrac{1}{\sqrt{3}}cos6x-\dfrac{\sqrt{2}}{\sqrt{3}}sin6x\)
Đặt \(\dfrac{1}{\sqrt{3}}=cosa\) với \(a\in\left(0;\dfrac{\pi}{2}\right)\Rightarrow\dfrac{\sqrt{2}}{\sqrt{3}}=sina\)
\(\Rightarrow sin8x.cosa-cos8x.sina=cos6x.cosa-sin6x.sina\)
\(\Leftrightarrow sin\left(8x-a\right)=cos\left(6x+a\right)\)
\(\Leftrightarrow sin\left(8x-a\right)=sin\left(\dfrac{\pi}{2}-6x-a\right)\)
\(\Leftrightarrow...\)
d/
\(2cos^22x+cos2x=4sin^22x.cos^2x\)
\(\Leftrightarrow2cos^22x+cos2x=2\left(1+cos2x\right)\left(1-cos^22x\right)\)
\(\Leftrightarrow2cos^32x+4cos^22x-cos2x-2=0\)
\(\Leftrightarrow\left(cos2x+2\right)\left(2cos^22x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-2\left(vn\right)\\2cos^22x-1=0\end{matrix}\right.\)
\(\Leftrightarrow cos4x=0\)
\(\Leftrightarrow4x=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{8}+\frac{k\pi}{4}\)
c/
\(cos^4x+sin^6x=cos2x\)
\(\Leftrightarrow\left(\frac{1+cos2x}{2}\right)^2+\left(\frac{1-cos2x}{2}\right)^3=cos2x\)
\(\Leftrightarrow cos^32x-5cos^2x+7cos2x-3=0\)
\(\Leftrightarrow\left(cos2x-1\right)^2\left(cos2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=3\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=k2\pi\)
\(\Rightarrow x=k\pi\)
a.
Với \(cosx=0\) ko phải nghiệm
Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)
\(\Rightarrow-3tanx+tan^2x=2+2tan^2x\)
\(\Leftrightarrow tan^2x+3tanx+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=-1\\tanx=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{4}+k\pi\\x=arctan\left(-2\right)+k\pi\end{matrix}\right.\)
b.
Với \(cosx=0\) không phải nghiệm
Với \(cosx\ne0\) chia 2 vế cho \(cos^2x\)
\(\Rightarrow2tan^2x+tanx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=arctan\left(-\dfrac{3}{2}\right)+k\pi\end{matrix}\right.\)