Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Trên hình dưới, hai đường thẳng a, b song song với nhau, đường thẳng c cắt a tại A, cắt b tại B.
a) Lấy một cặp góc so le trong (chẳng hạn cặp góc A4,B1A4,B1) rồi đo xem hai góc đó có bằng nhau hay không?
b) Hãy lí luận vì sao ˆA4=ˆB1A4^=B1^ theo gợi ý sau:
- Nếu ˆA4≠ˆB1A4^≠B1^ thì qua A ta vẽ tia Ap sao cho ˆPAB=ˆB1.PAB^=B1^.
- Thế thì AP // b, vì sao?
- Qua A, vừa có a // b, vừa có AP // b, thì sao?
Kết luận: Đường thẳng AP và đường thẳng a chỉ là một. Nói cách khác, ˆPAB=ˆA4PAB^=A4^ từ đó ˆA4=ˆB1.A4^=B1^.
Thu gọn: M(x) = 4x^3 + 2x^4 - x^2 - x^3 + 2x^2 - x^4 +1 - 3x^3 = x^4 + x^2 +1
Do x^4 lớn hơn hoặc = 0 và x^2 lớn hơn hoặc = 0 vs mọi x => x^4 + x^2 +1 vô nghiệm
\(M\left(x\right)=4^3+2x^4-x^2-x^3+2x^2-x^4+1-3x^3\)
\(M\left(x\right)=x^4+x^2+1\)
Vì : \(x^4\ge0\forall x\)
\(x^2\ge0\forall x\)
\(\Rightarrow x^4+x^2\ge0\forall x\Rightarrow x^4+x^2+1>0\forall x\)
=> M(x) vô nghiệm
g(x) = ( x - 3 ) x ( 16 - 4x )
Ơ đay xẽ xảy ra hai trương hợp :
+) ( x - 3 ) = 0
x = 0 + 3
x = 3
+) ( 16 - 4x ) = 0
4x = 16 - 0
4x = 16
x = 16 : 4
x = 4
Đúng nha Hero chibi
x2 + 4x + 3
<=> 2x2 - 3x - x + 3
<=> (x2 - 3x) - (x - 3)
<=> x.(x - 3) - (x - 3)
<=> (x - 1)(x - 3) = 0
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
Vậy:..
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
\(D\left(x\right)=-4x^3-4x^3-x^2-x^2+2x+3x+5=0\)
\(-8x^3-2x^2+5x+5=0\)
\(\left(-8x^2-10x-5\right)\left(x-1\right)=0\)
TH1 : \(x=1\)
TH2 : cj phân tích như vậy nhé
\(\Delta=\left(-2\right)^2-4.\left(-8\right).\left(-5\right)=4-160=-156< 0\)
Nên phương trình vô nghiệm (P/s chỗ này : đừng chép vào bài TH2 nhé, cj thử thôi !)
Vậy x = 1
\(-4x^3-4x^3-x^2-x^2+2x+3x+5=0\)
\(< =>-8x^3-2x^2+5x+5=0\left(1\right)\)
Nháp : dùng pp nhẩm nghiệm ta thấy \(-8-2+5+5=0\)
Nên phương trình nhận 1 là nghiệm
Dùng lược đồ hóc-ne
-8 1 -8 -2 5 5 -10 -5 0
\(\left(1\right)< =>\left(x-1\right)\left(-8x^2-10x-5\right)=0\)
\(< =>\orbr{\begin{cases}x-1=0\\-8x^2-10x-5=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=1\\\Delta=\left(-10\right)^2-4.\left(-5\right)\left(-8\right)=100-160=-60\end{cases}}\)
\(< =>\orbr{\begin{cases}x=1\\vo-nghiem\end{cases}}\)
Vậy nghiệm của đa thức trên là 1
\(4x^2\left(x-2\right)-x+2=4x^2\left(x-2\right)-\left(x-2\right)\)
\(=\left(4x^2-1\right)\left(x-2\right)\)
Đa thức có nghiệm \(\Leftrightarrow\left(4x^2-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x^2-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{1}{4}}=\pm\frac{1}{2}\\x=2\end{cases}}\)
Vậy đa thức có 3 nghiệm \(2;\pm\frac{1}{2}\)
\(4x^2\left(x-2\right)-x+2=0\)
\(\Leftrightarrow4x^3-8x^2-x+2=0\)
\(\Leftrightarrow4x^2\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\4x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm\frac{1}{2}\end{cases}}\)
Ta xét `: x^2 + 4x + 2 = 0`
`=> x^2 + 2x + 2x + 2 =0`
`=> x^2 + 2x + 2x + 4 =2`
`=> ( x + 2 )^2 = 2 =` \(\sqrt{2}^2\) `=` \(-\left(\sqrt{2}\right)^2\)
`=> x + 2 =` \(\sqrt{2}\) hoặc `x + 2=` \(-\sqrt{2}\)
`=> x =` \(\sqrt{2}-2\) hoặc `x =` \(-\sqrt{2}-2\)
Vậy `x in {` \(\sqrt{2}-2\) `;` \(-\sqrt{2}-2\) }` là nghiệm của `x^2 + 4x + 2`
Nghiệm của bài này khá lẻ `.`