Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án C.
ABCD là hình chữ nhật nên BD = 2a, ta có AD//(SBC) nên suy ra
với AH ⊥ SB. Tam giác SAB vuông cân tại A nên H là trung điểm của SB suy ra A H = a 2 2
Vậy
Chọn C
Đặt hệ trục tọa độ Oxyz như hình vẽ. Khi đó, ta có A (0; 0; 0), B (a; 0; 0), D (0; a√3; 0), S (0; 0; a)
Ta có , nên đường thẳng BD có vectơ chỉ phương là
Như vậy, mặt phẳng (SBC) có vectơ pháp tuyến là . Do đó, α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC) thì:
Hình vuông ABCD có độ dài đường chéo bằng a√2 suy ra hình vuông đó có cạnh bằng a.
Chọn hệ trục tọa độ Oxyz như hình vẽ. Ta có A (0;0;0), B (a;0;0), C (a;a;0), S (0;0;a).
Đáp án A
Hướng dẫn giải: Ta có:
Có A H 2 + S A 2 = 5 a 2 4 = S H 2 ⇒ ∆ S A H vuông tại A
Do đó mà S A ⊥ ( A B C D ) nên
(Mặt phẳng (SAB) vuông góc với đáy (ABCD))
Trong tam giác vuông SAC, có
Đặt hệ trục tọa độ Oxyz như hình vẽ.
Khi đó, ta có A (0;0;0), B (a;0;0), D (0; a√3 ; 0), S (0;0;a).
Ta có , nên đường thẳng BD có vectơ chỉ phương là .
Như vậy, mặt phẳng (SBC) có vectơ pháp tuyến là
Do đó, α là góc tạo bởi giữa đường thẳng BD và mặt phẳng (SBC) thì