K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

Chọn A

28 tháng 6 2023

Mã đề 118

loading...

loading...

loading...

loading...

loading...

28 tháng 6 2023

Mã đề 101

loading...

loading...

loading...

loading...

loading...

"Giúp tôi giải toán" trên Online Math đã trở thành một diễn đàn hết sức sôi động cho các bạn học sinh, các thầy cô giáo và các bậc phụ huynh từ mọi miền đất nước. Ở đây các bạn có thể chia sẻ các bài toán khó, lời giải hay và giúp nhau cùng tiến bộ. Để diễn đàn này ngày càng hữu ích, các bạn lưu ý các thông tin sau đây:I. Nội qui tham gia "Giúp tôi giải toán"1. Không đưa câu hỏi...
Đọc tiếp

"Giúp tôi giải toán" trên Online Math đã trở thành một diễn đàn hết sức sôi động cho các bạn học sinh, các thầy cô giáo và các bậc phụ huynh từ mọi miền đất nước. Ở đây các bạn có thể chia sẻ các bài toán khó, lời giải hay và giúp nhau cùng tiến bộ. Để diễn đàn này ngày càng hữu ích, các bạn lưu ý các thông tin sau đây:

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không tic "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

II. Cách nhận biết câu trả lời đúng

Trên diễn đàn có thể có rất nhiều bạn tham gia giải toán. Vậy câu trả lời nào là đúng và tin cậy được? Các bạn có thể nhận biết các câu trả lời đúng thông qua 6 cách sau đây:

1. Lời giải rõ ràng, hợp lý (vì nghĩ ra lời giải có thể khó nhưng rất dễ để nhận biết một lời giải có là hợp lý hay không. Chúng ta sẽ học được nhiều bài học từ các lời giải hay và hợp lý, kể cả các lời giải đó không đúng.)

2. Lời giải từ các giáo viên của Online Math có thể tin cậy được (chú ý: dấu hiệu để nhận biết Giáo viên của Online Math là các thành viên có gắn chứ "Quản lý" ở ngay sau tên thành viên.)

3. Lời giải có số bạn chọn "Đúng" càng nhiều thì càng tin cậy.

4. Người trả lời có điểm hỏi đáp càng cao thì độ tin cậy của lời giải sẽ càng cao.

5. Các bài có dòng chữ "Câu trả lời này đã được Online Math chọn" là các lời giải tin cậy được (vì đã được duyệt bởi các giáo viên của Online Math.)

6. Các lời giải do chính người đặt câu hỏi chọn cũng là các câu trả lời có thể tin cậy được.

III. Thưởng VIP cho các thành viên tích cực

Online Math hiện có 2 loại giải thưởng cho các bạn có điểm hỏi đáp cao: Giải thưởng chiếc áo in hình logo của Online Math cho 5 bạn có điểm hỏi đáp cao nhất trong tháng và giải thưởng  thẻ cào 50.000đ hoặc 2 tháng VIP cho 6 bạn có điểm hỏi đáp cao nhất trong tuần. Thông tin về các bạn được thưởng tiền được cập nhật thường xuyên tại đây.

0
28 tháng 9 2019

Chung  minh rằng :  , ta gọi x là số lần cân ( cân thằng bằng) , x là số tự nhiên ≥  3 ,   , ta luôn tìm 1 đồng bị lỗi qua số  qua số lân cân là x và số đồng tối đa là:   2.(3^x-2+ 3^x-3+3^x-4...+3^x-x) +(3^x-2+ 3^x-3^x-4...+3^x-x)+ 4-x  trong đó luôn tìm được 1 đồng tiền bị lỗi . bài toán  có 13 đồng tiền trong đó có 1 đồng bị lỗi không biết nặng hơn hay nhẹ hơn đồng tiền còn lại qua 3 lần...
Đọc tiếp

Chung  minh rằng :  , ta gọi x là số lần cân ( cân thằng bằng) , x là số tự nhiên ≥  3 ,   , ta luôn tìm 1 đồng bị lỗi qua số  qua số lân cân là x và số đồng tối đa là:   

2.(3^x-2+ 3^x-3+3^x-4...+3^x-x) +(3^x-2+ 3^x-3^x-4...+3^x-x)+ 4-x

 

 

trong đó luôn tìm được 1 đồng tiền bị lỗi .

 

cleardot.gifbài toán  có 13 đồng tiền trong đó có 1 đồng bị lỗi không biết nặng hơn hay nhẹ hơn đồng tiền còn lại qua 3 lần cân thăng bằng tìm gia đồng bị lỗi. Lời giải:

Ta đánh đấu từng đồng bằng các số từ 1 đến 13 , ta chia thành 3 nhóm nhóm A là nhóm có số đồng từ số 1 đến số 4 , nhóm B có số đồng từ 5 đến 8 , nhóm C có số đồng từ 9 đến 13 , lần cân thứ nhất: ta cho nhóm A cân với nhóm B nếu cân thằng bằng thì nhóm C sẽ có 1 đồng bị lỗi , ta cho đồng 12 , 13 gia ngoài, cho thêm đồng số 1 vào cùng với đồng số 9 cho lên cân vơi đồng số 11 và đồng số 10 nếu cân thăng bằng thì đồng số 1 2 và đồng số 13 có 1 đồng bị lỗi . Ta cân 1 trong 2 đồng trên vơi bất kể đồng còn lại nào thì có thể tìm gia được đồng bị lỗi, nếu cân lệnh ta gi nhớ xem nhóm nào nặng hơn , vậy là trong 3 đồng 9, 10, 11 có 1 đồng bị lỗi , lần cân thứ 3 ta cho đồng số 10 cân với đồng số 11 nếu cân thăng bằng thì đồng số 9 bị lỗi còn cân lệch thì đồng số 11 và 10 có 1 đồng bị lỗi ta lấy 2 đồng cân vơi nhau và để ý xem đồng nào cùng nặng hoặc cùng nhẹ như nhóm này ở lần cân số 2 là đồng bị lỗi.
Quay chở lại trường hợp cân nhóm A với Nhóm B nếu cân không thăng bằng ta gi nhớ xem nhóm nào nặng hơn. Ta bỏ đồng số 4 của nhóm A và đồng số 7,8 của nhóm B gia ngoài. Cho đồng số 3 sang nhóm B đồng số 6 sang nhóm A . Vậy nhóm A có đồng 1 ,2 ,6 nhóm B có đồng 3 ,5 và đồng số 9 cho thêm vào không bị lỗi. Nếu cân thăng bằng thì 3 đồng 4 ,7,8 có đồng lỗi, ta lấy đồng 7 cân với đồng 8 cũng suy luận như nhóm C là tìm đc đồng bị lỗi. Nếu cân đảo chiều thì đồng 3 hoặc đồng 6 bị lỗi, còn lần cân còn lại tìm gia được đồng nào bị lỗi. Nếu cân vẫn lệch như lần cân số 1 thì 3 đồng 1,2,5 có đồng bị lỗi ta cũng cân đồng số 1 với đồng số 2 như cách cân ở nhóm C có thể tìm gia đồng bị lỗi.

từ dữ niệu bài toán ta có :

 Với 3 lần cân ta cân được tối đa 13 đồng tiền , 

 Với 4 lần cân ta cân được tối đa là 39 đồng tiền ( 1 tuần trc mình nhầm to cái này) vì đơn giản là 39 đông chia thành 13 cân vơi13 , nếu thăng bằng thì 13 đồng còn lại bị lỗi và với 3 lần cân còn lại tìm đc đồng bị lỗi trong 13 đồng như là làm, còn cân lệch thì chia thành 3 nhóm 9,9,8 lấy ghép mỗi bên bên này 4 thì bên kia 5  có 3 khả năng xẩy ra ứng với 3 nhóm có số đồng là 9 hoặc 9, hoặc 8 bị lỗi , nếu 9 đồng bị lỗi thì lại chị làm 3,3,3 khác với bài toán 13 đông xu ta chia đc 3,3,2 do khi cân 2 nhóm số đồng xu cộng lại không thể lẻ đc nhầm tổng quát ở chỗ này

Với 5 lần cân thì ta được số đồng tối đa là 119 , lấy 40 đồng cân với 40 đông , cân thằng bằng thì 39 đông còn lại bị lỗi với 4 lần cân còn lại tìm đc 1 đồng bị lỗi như trên

Với 6 lần cân ta đc số đồng tối đa là 361 đồng lấy 121 cân với 121 đồng nếu cân thằng bằng thì 119 đồng còn lại bị lỗi còn cân lệch thì 242 đồng bị  lỗi cho thêm 1  đồng  không bị lỗi vào ta chia thành 3 nhóm mỗi nhóm có 81 đồng sắp xếp sao cho mỗi bên có 40 hoặc 41 đồng của của lần lượt 2 nhóm trên .

Với 7 lần ta có số đồng tối đa xác định đc là 364+364+361 tổng số là 1089

 với 8 lần cân ta có số đồng tối đa xác định được 1 đồng bị lỗi là : 1093+1093+1089=3275

với 9 lần cân ta luôn được số đồng xu tối đa để tìm được 1 đồng xu bị lỗi là : 3280+3280+3275=9835

 

Tổng hợp lại bài toán với x là số lần cân     x là số tự nhiên x≥  3ta luôn có số đồng tiền tối đa xác định đc qua x lần cân là:  . Thì tìm đc 1 đồng tiền bị lỗi. 2.(3^x-2+ 3^x-3+3^x-4...+3^x-x) +(3^x-2+ 3^x-3^x-4...+3^x-x)+ 4-x

 

1
2 tháng 5 2020

ôi ài thế bạn cho bài dễ hơn đi 

:v

12 tháng 1 2019

Đáp án D

5 tháng 4 2022

đáp án D nha bạn
#hoctot