Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\left(\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
đặt \(A=\frac{1}{99.98}+...+\frac{1}{3.2}+\frac{1}{2.1}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\)
\(A=1-\frac{1}{99}\)
\(A=\frac{98}{99}\)
thay A vào, ta được :
\(\frac{1}{99}-\frac{98}{99}=\frac{-97}{99}\)
b) \(\frac{2}{100.99}-\frac{2}{99.98}-...-\frac{2}{3.2}-\frac{2}{2.1}\)
\(=\frac{2}{100.99}-\left(\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\right)\)
đặt \(A=\frac{2}{99.98}+...+\frac{2}{3.2}+\frac{2}{2.1}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+...+\frac{2}{98.99}\)
\(A=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\right)\)
\(A=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)
\(A=2.\left(1-\frac{1}{99}\right)\)
\(A=2.\frac{98}{99}\)
\(A=\frac{196}{99}\)
Thay A vào, ta được :
\(\frac{2}{100.99}-\frac{196}{99}=\frac{-19598}{9900}\)
Ta có:
\(P=\frac{1}{2000.1999}-\frac{1}{1999.1998}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow P=\frac{1}{1999.2000}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\right)\)
\(\Rightarrow P=\frac{1}{1999.2000}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)
\(\Rightarrow P=\frac{1}{1999.2000}-\left(1-\frac{1}{1999}\right)\)
\(\Rightarrow P=\frac{1}{1999.2000}-\frac{1998}{1999}\)
\(\Rightarrow P=\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)
\(\Rightarrow P=\left(\frac{1}{1999}-\frac{1998}{1999}\right)-\frac{1}{2000}\)
\(\Rightarrow P=\frac{-1997}{1999}-\frac{1}{2000}\)
\(\Rightarrow P+\frac{1997}{1999}=\frac{-1997}{1999}-\frac{1}{2000}+\frac{1}{1997}\)
\(\Rightarrow P+\frac{1997}{1999}=\frac{-1}{2000}\)
Vậy....
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+\frac{1}{97}-....-\frac{1}{3}+\frac{1}{2}-\frac{1}{2}+1\)
\(\frac{1}{99}+1=\frac{100}{99}\)
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-\frac{1}{97.96}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=-\left(\frac{1}{99}+\frac{1}{99.98}+\frac{1}{98.97}+\frac{1}{97.96}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+\frac{1}{97}-\frac{1}{96}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)
\(=-\left(\frac{1}{99}-1\right)\)
\(=-\frac{98}{99}\)
\(\Rightarrow P=\frac{1}{2000.1999}-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{1998.1999}\right)\)
\(=\frac{1}{2000.1999}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\right)\)
\(=\frac{1}{2000.1999}-\left(1-\frac{1}{1999}\right)\)
\(=\frac{1}{1999.2000}-\frac{1998}{1999}\)
\(\Rightarrow P+\frac{1997}{1999}=\frac{1}{1999.2000}-\frac{1998}{1999}+\frac{1997}{1999}\)
\(=\frac{-1}{2000}\)
P= \(\frac{1}{2000.1999}\)- (\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1998.1999}\))
= \(\frac{1}{1999}-\frac{1}{2000}\)- (\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1998}-\frac{1}{1999}\))
= \(\frac{1}{1999}-\frac{1}{2000}\)- ( \(1-\frac{1}{1999}\))
= \(\frac{1}{1999}-\frac{1}{2000}-\frac{1998}{1999}\)
= \(\frac{-1997}{1999}-\frac{1}{2000}\)
=) P + \(\frac{1997}{1999}\)= \(\frac{-1997}{1999}-\frac{1}{2000}+\frac{1997}{1999}=\frac{-1}{2000}\)
\(A=\frac{1}{2003.2002}-\frac{1}{2002.2001}-\frac{1}{2001.2000}-....-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=-\left(\frac{1}{2003.2002}+\frac{1}{2002.2001}+\frac{1}{2001.2000}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)
\(=-\left(\frac{1}{2003}-\frac{1}{2002}+\frac{1}{2002}-\frac{1}{2001}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)
\(=-\left(\frac{1}{2003}-1\right)=-\left(-\frac{2002}{2003}\right)=\frac{2002}{2003}\)
Vậy ....
1/100‐1/100.99‐1/99.98‐...‐1/3.2‐1/2.1
\(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=-\frac{98}{100}=-\frac{49}{50}\)
Bạn ơi cho mình hỏi từ sau chỗ \(\frac{1}{2004.2003}\)là dấu trừ hết ạ? Nếu là dấu cộng thì mình làm được :33
đúng rồi bạn ơi thế mới khó