Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}\)
\(\Rightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
Nhận xét:
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{1}{6}\)
\(\Rightarrow S>\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{3}{5}\)
\(\Rightarrow S>\frac{3}{5}\left(1\right)\)
Lại có:
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
Nhận xét:
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}< \frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{1}{3}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}< \frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{5}\)
\(\Rightarrow S< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{4}{5}\)
\(\Rightarrow S< \frac{4}{5}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\frac{3}{5}< S< \frac{4}{5}\) (Đpcm)
S = \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{5}\) + ... + \(\dfrac{1}{8}\) + \(\dfrac{1}{9}\)
Vì \(\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}>..>\dfrac{1}{9}\) ta có:
\(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) > \(\dfrac{2}{4}\) = \(\dfrac{1}{2}\)
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}>\dfrac{1}{9}.5\) = \(\dfrac{5}{9}>\dfrac{5}{10}=\dfrac{1}{2}\)
Cộng vế với vế ta có:
S > \(\dfrac{1}{2}+\dfrac{1}{2}=1\) (1)
\(\dfrac{1}{3}+\dfrac{1}{4}< \dfrac{2}{3}\)
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}< \dfrac{1}{5}.5=1\)
Cộng vế với vế ta có:
\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{9}\) < \(\dfrac{2}{3}\) + 1 < 2 (2)
Kết hợp (1) và (2) ta có:
1 < S < 2 (đpcm)
Ta có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}< \dfrac{1}{2^2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)\(=\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{9}=\dfrac{23}{36}< \dfrac{32}{36}=\dfrac{8}{9}\). (1)
Ta lại có: \(S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2^2}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{2^2}+\dfrac{1}{3}-\dfrac{1}{10}=\dfrac{19}{20}>\dfrac{8}{20}=\dfrac{2}{5}\). (2)
Từ (1) và (2) suy ra đpcm.
Giải:
Đặt \(A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}\)
Ta có:
\(A=\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}\)
\(\Rightarrow A=\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)+\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}\right)\)
Nhận xét:
\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}< \dfrac{1}{30}+\dfrac{1}{30}+...+\dfrac{1}{30}=\dfrac{1}{3}\)
\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}< \dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{1}{4}\)
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{1}{5}\)
\(\Rightarrow A< \dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{47}{60}< \dfrac{48}{60}=\dfrac{4}{5}\)
\(\Rightarrow A< \dfrac{4}{5}\left(1\right)\)
Lại có:
\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}>\dfrac{1}{40}+\dfrac{1}{40}+...+\dfrac{1}{40}=\dfrac{1}{4}\)
\(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}>\dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{1}{5}\)
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{60}>\dfrac{1}{60}+\dfrac{1}{60}+...+\dfrac{1}{60}=\dfrac{1}{6}\)
\(\Rightarrow A>\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}=\dfrac{37}{60}>\dfrac{36}{60}=\dfrac{3}{5}\)
\(\Rightarrow A>\dfrac{3}{5}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\)
\(\Rightarrow\dfrac{3}{5}< A< \dfrac{4}{5}\)
Vậy \(\dfrac{3}{5}< \dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{33}+...+\dfrac{1}{59}+\dfrac{1}{60}< \dfrac{4}{5}\) (Đpcm)
Đặt A=131+132+133+...+159+160A=131+132+133+...+159+160
Ta có:
A=131+132+133+...+159+160A=131+132+133+...+159+160
⇒A=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)⇒A=(131+132+...+140)+(141+142+...+150)+(151+152+...+160)
Nhận xét:
131+132+...+140<130+130+...+130=13131+132+...+140<130+130+...+130=13
141+142+...+150<140+140+...+140=14141+142+...+150<140+140+...+140=14
151+152+...+160<150+150+...+150=15151+152+...+160<150+150+...+150=15
⇒A<13+14+15=4760<4860=45⇒A<13+14+15=4760<4860=45
⇒A<45(1)⇒A<45(1)
Lại có:
131+132+...+140>140+140+...+140=14131+132+...+140>140+140+...+140=14
141+142+...+150>150+150+...+150=15141+142+...+150>150+150+...+150=15
151+152+...+160>160+160+...+160=16151+152+...+160>160+160+...+160=16
⇒A>14+15+16=3760>3660=35⇒A>14+15+16=3760>3660=35
⇒A>35(2)⇒A>35(2)
Từ (1)(1) và (2)(2)
⇒35<A<45⇒35<A<45
Vậy 35<131+132+133+...+159+160<4535<131+132+133+...+159+160<45
Ta có :
\(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\)
\(S=\dfrac{1}{5}+\left(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}\right)+\left(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}\right)\)
Nhận xét :
\(\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{12}+\dfrac{1}{12}+\dfrac{1}{12}=\dfrac{1}{4}\)
\(\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{60}+\dfrac{1}{60}+\dfrac{1}{60}=\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}\)
\(\Rightarrow S< \dfrac{1}{2}\rightarrowđpcm\)
S sẽ có 30 số hạng. Nhóm thành 3 nhóm, mỗi nhóm 101 số hạng.
S= (1/31+1/32+...+1/40) + (1/41 + 1/42 +...+1/50) + (1/51 +1/52+...+1/60)
S < (1/30 + 1/30 +...+ 1/30) + ( 1/40 +1/40+...+1/40) + (1/50 +1/50+...+1/50)
S < 1/30 + 1/40 +1/50 ; S < 47/60 < 48/60 = 4/5 (1)
S > (1/40 + 1/40 +...=1/40) + (1/50 + 1/50 +...+1/50) + (1/60 +1/60+...+1/60)
S < 10/40 + 10/50 +10/60 ; S > 37/60 > 36/60 = 3/5 (2)
Tư (1) và (2) => 3/5 < S < 4/5
NHỚ TICK CHO MINK NHA, CHÚC BẠN HỌC TỐT
S=(\(\dfrac{1}{31}\)+\(\dfrac{1}{32}\)+...+\(\dfrac{1}{40}\))+(\(\dfrac{1}{41}\)+\(\dfrac{1}{42}\)+...+\(\dfrac{1}{50}\))+(\(\dfrac{1}{51}\)+\(\dfrac{1}{52}\)+...+\(\dfrac{1}{60}\))
=>\(\dfrac{10}{40}\)+\(\dfrac{10}{50}\)+\(\dfrac{10}{60}\)< S < \(\dfrac{10}{30}\)+\(\dfrac{10}{40}\)+\(\dfrac{10}{50}\)
=>\(\dfrac{37}{60}\)< S <\(\dfrac{47}{60}\)
=>\(\dfrac{3}{5}\)=\(\dfrac{36}{60}\)<\(\dfrac{37}{60}\)< S < \(\dfrac{47}{60}\)<\(\dfrac{48}{60}\)=\(\dfrac{4}{5}\)
=> \(\dfrac{3}{5}\)< S <\(\dfrac{4}{5}\)
1.
Ta có:
Vì b+1-b=1=>\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{1}{b.\left(b+1\right)}\)<\(\dfrac{1}{b.b}\)(1)
Vì b-(b-1)=1=>\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{1}{b.\left(b-1\right)}\)>\(\dfrac{1}{b.b}\)(2)
Từ (1) và (2)=>\(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b.b}< \dfrac{1}{b-1}-\dfrac{1}{b}\)
Câu 2 bạn hỏi bạn Bùi Ngọc Minh nhé PR cho nó
Bài 2:
Ta có:S=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{9^2}=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)
S>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\left(1\right)\)
S<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{2}{5}< S< \dfrac{8}{9}\)
S=\(\dfrac{1}{5.5}+\dfrac{1}{6.6}+\dfrac{1}{7.7}+...+\dfrac{1}{2018.2018}\)
Ta có: \(\dfrac{1}{5.5}< \dfrac{1}{4.5};\dfrac{1}{6.6}< \dfrac{1}{5.6};\dfrac{1}{7.7}< \dfrac{1}{6.7};...;\dfrac{1}{2018.2018}< \dfrac{1}{2017.2018}\)
\(\Rightarrow\) S<\(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{2017.2018}\)
S<\(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{2017}-\dfrac{1}{2018}\)
S< \(\dfrac{1}{4}-\dfrac{1}{2018}< \dfrac{1}{4}\)
\(\Rightarrow\)S<\(\dfrac{1}{4}\)
Học tốt nha
Kiyoko Vũ
a, xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6
ta có
1 = 1
1/2 + 1/3 < 1/2 + 1/2 = 1
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1
tương tự
1/16 +1/17 + .. + 1/31 < 1
1/32 + 1/33 + .. + 1/63 < 1
=> cộng lại => A < 6
b, Câu hỏi của trịnh quỳnh trang - Toán lớp 6 - Học toán với OnlineMath
S=(1/31+1/32+...+1/40)+(1/41+...+1/50)+(1/51+...+1/60)
=>S>1/40*10+1/50*10+1/60*10=3/5
S=(1/31+1/32+...+1/40)+(1/41+...+1/50)+(1/51+...+1/60)
=>S<1/30*10+1/40*10+1/50*10=4/5
=>3/5<S<4/5