Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)
Đặt \(B=1+7+7^2+...+7^{14}\)
\(\Rightarrow7B=7+7^2+...+7^{15}\)
\(\Rightarrow7B-B=6B=7^{15}-1\)
\(\Rightarrow B=\frac{7^{15}-1}{6}\)
\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)
Tự làm tiếp nha
22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222q22222222222222222222222222222222222222222222222222222222222222222222222222222222222222
Ta có \(A=\frac{7^{10}}{1+7+7^2+7^3+...+7^9}\)
Đặt \(C=1+7+7^2+7^3+....+7^9\)
Nên \(7.C=7+7^2+7^3+7^4+...+7^{10}\)
Suy ra \(7C-C=7^{10}-1\)hay \(6C=7^{10}-1\)
Khi đó \(\frac{7^{10}}{7^{10}-1}=\frac{7^{10}-1+1}{7^{10}-1}=1+\frac{1}{7^{10}-1}=\frac{A}{6}\)
Ta có \(B=\frac{5^{10}}{1+5+5^2+5^3+....+5^9}\)
Đặt \(D=1+5+5^2+5^3+....+5^9\)
Nên \(5.C=5+5^2+5^3+5^4+....+5^{10}\)
Suy ra \(5C-C=5^{10}-1\)hay \(4C=5^{10}-1\)
Khi đó \(\frac{5^{10}}{5^{10}-1}=\frac{5^{10}-1+1}{5^{10}-1}=1+\frac{1}{5^{10}-1}=\frac{B}{4}\)
Vì \(1=1;\frac{1}{5^{10}-1}>\frac{1}{7^{10}-1}\Rightarrow1+\frac{1}{5^{10}-1}>1+\frac{1}{7^{10}-1}\Rightarrow\frac{B}{4}>\frac{A}{6}\)
\(\frac{B}{4}>\frac{A}{6}\Rightarrow6B>4A\Rightarrow3B>2A\Rightarrow1,5B>A\Rightarrow B< A\)
ta có : A = \(\frac{7^{10}}{1+7+7^2+7^3+...+7^9}=1:\frac{1+7+7^2+7^3+...+7^9}{7^{10}}\)
= \(1:\left(\frac{1}{7^{10}}+\frac{7}{7^{10}}+\frac{7^2}{7^{10}}+...+\frac{7^8}{7^{10}}+\frac{7^9}{7^{10}}\right)\)=\(1:\left(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\right)\)
tương tự ta được : B = \(1:\left(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\right)\)
Vì \(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\)< \(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\)
=> A > B
a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)
ta có :
\(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)
\(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)
\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)
Vậy \(A< 3\)
a. Ta có :
\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)
\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)
\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)
Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)
Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)
Vậy \(A< 3\)
Bài làm
-)
\(-\frac{9}{4}=\frac{-9\cdot3}{4\cdot3}=\frac{-27}{12}\)
\(\frac{1}{3}=\frac{1\cdot4}{3\cdot4}=\frac{4}{12}\)
Vì -27 < 4 => -27/12 < 4/12
Do đó: \(-\frac{9}{4}< \frac{1}{3}\)
-)
\(-\frac{8}{3}=\frac{-8\cdot7}{3\cdot7}=\frac{-56}{21}\)
\(\frac{4}{-7}=\frac{4\cdot3}{-7\cdot3}=\frac{12}{-21}=\frac{12\cdot-1}{-21\cdot-1}=\frac{-12}{21}\)
Vì -56 < -12 => -56/21 < -12/21
Do đó: \(-\frac{8}{3}< \frac{4}{-7}\)
-)
\(\frac{9}{-5}=\frac{9\cdot2}{-5\cdot2}=\frac{18}{-10}=\frac{18\cdot-1}{-10\cdot-1}=\frac{-18}{10}\)
\(\frac{7}{-10}=\frac{7\cdot-1}{-10\cdot-1}=\frac{-7}{10}\)
Vì -18 < -7 => -18/10 < -7/10
Do đó: \(\frac{9}{-5}< \frac{7}{-10}\)