Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\Delta'=32>0\)
\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=12\\x_1x_2=4\end{matrix}\right.\)
Mặt khác: \(T=\dfrac{x_1^2+x^2_2}{\sqrt{x_1}+\sqrt{x_2}}\)
\(\Rightarrow T^2=\dfrac{x_1^4+x^4_2+2x_1^2x_2^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(x_1^2+x_1^2\right)^2}{x_1+x_2+2\sqrt{x_1x_2}}\) \(=\dfrac{\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2}{x_1+x_2+2\sqrt{x_1x_2}}=\dfrac{\left(12^2-2\cdot4\right)^2}{12+2\sqrt{4}}=1156\)
Mà ta thấy \(T>0\) \(\Rightarrow T=\sqrt{1156}=34\)
b/ Tọa độ điểm A
\(\hept{\begin{cases}y=-x+1\\y=x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
=> A(0, 1)
Tọa độ điểm B
\(\hept{\begin{cases}y=-x+1\\y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
=> B(2, - 1)
Tọa độ điểm C
\(\hept{\begin{cases}y=x+1\\y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)
=> C(-2, -1)
c/ Ta có vecto AB = (2, - 2) => AB = \(2\sqrt{2}\)
Vecto BC = (- 4, 0) => BC = 4
Vecto CA = (- 2, - 2) => CA = \(2\sqrt{2}\)
Từ đây ta có CA = AB
BC2 - AB2 - CA2 = 16 - 8 - 8 = 0
=> ∆ABC vuông cân tại A
Giả sử tồn tại A, B thuộc Z để có đẳng thức
99999 + 11111\(\sqrt{3}\) = (a + b\(\sqrt{3}\))^2
=> 99999 + 11111\(\sqrt{3}\) = A^2 + 3B^2 + 2AB\(\sqrt{3}\)
Do do\(\sqrt{3}\) = 99999-A^2 - 3B^2/11111 - 2AB
Là số hữu tỉ ,vô lý
\(\Rightarrow\)Ket luan