Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi chiều dài 3 tấm vải lúc đầu lần lượt là a,b,c.
Theo đề bài, ta có: a+b+c= 126 (m)
và \(a-\frac{1}{2}\cdot a=b-\frac{2}{3}\cdot b=c-\frac{3}{4}\cdot c\)
\(\Leftrightarrow\left(1-\frac{1}{2}\right)a=\left(1-\frac{2}{3}\right)b=\left(1-\frac{3}{4}\right)c\)
\(\Leftrightarrow\frac{1}{2}a=\frac{1}{3}b=\frac{1}{4}c\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{126}{9}=14\)
Đến đây tự tìm a,b,c.
Bài 2:
Gọi số sách ở 3 tủ lần lượt là a,b,c:
Theo đề bài, ta có: a+b+c = 2250
và \(\frac{a-100}{16}=\frac{b}{15}=\frac{c+100}{14}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a-100}{16}=\frac{b}{15}=\frac{c+100}{14}=\frac{a-100+b+c+100}{16+15+14}=\frac{2250}{45}=50\)
Tự tìm tiếp nha.
Bài 4: Gọi số hs khối 6,7,8,9 lần lượt là a.b.c.d .
Theo đề, ta có; b - d = 70
và \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\)
Đặt \(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=k\)
\(\Rightarrow a=9k\)
\(b=8k\)
\(c=7k\)
\(d=6k\)
Thay b= 8k và d=6k vào b-d= 70:
8k - 6k = 70
2k = 70
k= 35
=> a=9k = 9* 35 = 315
(tìm b,c,d tương tự như tìm a. Sau đó kết luận)
Bài 5: Gọi số lãi của 2 tổ là a và b.
Theo đề , ta có: a+b = 12 800 000
và \(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{12800000}{8}=1600000\)
(tự tìm a,b)
Bài 6:
Gọi độ dài 3 cạnh của tam giác đó là a,b,c:
Theo đề, ta có: a+b+c=22
và \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{22}{10}=2,2\)
=> (tự tìm a,b,c)
goi canh goc vuong be la 5x (x>0)
canh goc vuong to la 12x
theo dinh ly pytago ta co (12x)2 +(5x)2 = 262
144x2+25x2=676
169x2=676
x=2
suy ra canh goc vuong lon la 24
canh goc vuong nho la 10
Gọi hai cạnh góc vuông lần lượt là a, b ( > 0 )
Giả sử: a<b
=> \(\frac{a}{b}=\frac{5}{12}\Rightarrow\frac{a^2}{b^2}=\frac{25}{144}\Rightarrow\frac{a^2}{25}=\frac{b^2}{144}\)
Lại có: \(a^2+b^2=26^2\) ( theo định lí Pitago)
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{a^2}{25}=\frac{b^2}{144}=\frac{a^2+b^2}{25+144}=\frac{26^2}{169}=4\)
=> \(\frac{a^2}{25}=4\Rightarrow a^2=100\Rightarrow a=10\)
\(\frac{b^2}{144}=4\Rightarrow b=24\)
Vậy độ dài hai cạnh là 10 và 24.
a) Gọi chiều dài và chiều rộng là x, y (x, y ∈ N*);x, y tỉ lệ với 3, 4 tức là
\(\frac{x}{3}=\frac{y}{4}\)
\(\left(x+y\right):2=28\) (m)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{\left(x+y\right):2}{\left(3+4\right):2}=\frac{48}{\frac{7}{2}}=8\)
\(\Rightarrow\left\{{}\begin{matrix}x=8.3=24\\y=8.4=32\end{matrix}\right.\)
Vậy...
Tạ Khánh Linh mấy bài này nâu ko hc quên r.....2 năm tước r