K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2016

 S có số số hạng là (2000-1):1+1=2000 ssh

vì 2+2^2 chia hết cho 6 mà 2000 chia hết cho 2

suy ra S chia hết cho 6

24 tháng 10 2019

minh dang can gap

16 tháng 11 2016

Ta có \(S=1+3^2+3^4+...+3^{98}\Rightarrow3^2.S=3^2+3^4+3^6+...+3^{100}\)

\(=\left(S-1\right)+3^{100}\)

\(\Rightarrow9S=S+3^{100}-1\Rightarrow S=\frac{3^{100}-1}{8}.\)

Ta thấy \(S=1+3^2+3^4+...+3^{98}=\left(1+3^{98}\right)+\left(3^2+3^4\right)+...+\left(3^{94}+3^{96}\right)\)

Vì 31 có tận cùng là 3; 32 có tận cùng là 9; 33 có tận cùng là 7, 34 có tận cùng là 1 nên 34k+2 có tận cùng là 9; 34k có tận cùng là 1. Vậy thì 1+398 có tận cùng là 0, tương tự 32 + 34 cũng có tận cùng là 0;...

Tóm lại S có tận cùng là 0 hay S chia hết cho 10. 

25 tháng 6 2015

Ta có: A=1999+19992+19993+…+19991998

=>       A=(1999+19992)+(19993+19994)+...+(19991997+19991998)

=>       A=1999.(1+1999)+19993.(1+1999)+…+19991997.(1+1999)

=>       A=1999.2000+19993.2000+…+19991997.2000

=>       A=(199+19993+…+199919997).2000

=>       A chia hết cho 2000

=>ĐPCM

l-i-k-e cho mình nha bạn

1 tháng 10 2016

   Ta có: A = (1999+19992+19993+...+19991998) chia hết cho 2000

                = (1999+19992)+(19993+19994)+...+(19991997+19991998)

                = 1999.(1999+1)+19993.(1999+1)+...+19991997.(1999+1)

                = 1999.2000+19993.2000+...+19991997.2000

                = 2000.(1999+19993+...+19991997)

              => Vậy, ta đã chứng minh được A chia hết cho 2000

18 tháng 4 2016

S = 1999 + 19992 + … + 19991998

S = 1999 ( 1 + 1999 + 19992 + … + 19991997 )

S = 1999 [ ( 1 + 1999 )( 1 + 19992 + 19994 + … + 19991996 ) ]

S = 1999 [ 2000 ( 1 + 19992 + 19994 + … + 19991996 ) ] chia hết cho 2000.

Vậy ta có điều phải chứng minh. 

6 tháng 12 2016

1. A = 2 + 22 + 23 + 24 + ... + 260

A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )

A = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )

A = 2 . 7 + 24 . 7 + ... + 258 . 7

A = ( 2 + 24 + ... + 258 ) . 7 => A \(⋮\)7

Vậy ...

2.Ta có : \(n+4⋮n+1\)

Mà : \(n+1⋮n+1\)

\(\Rightarrow\left(n+4\right)-\left(n+1\right)⋮n+1\Rightarrow n+4-n-1⋮n+1\)

\(\Rightarrow3⋮n+1\Rightarrow n+1\in\left\{1;3\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

3. Đặt B = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27

B = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )

B = ( 1 + 2 ) + 22 ( 1 + 2 ) + 24 ( 1 + 2 ) + 26 ( 1 + 2 )

B = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3

B = ( 1 + 22 + 24 + 26 ) . 3 \(\Rightarrow\) B \(⋮\)3

Vậy ...

6 tháng 12 2016

ban nay hoc gioi qua

 

29 tháng 12 2017

Xét \(2^2S=2^2+2^4+.....+2^{204}\)

=>\(\left(2^2-1\right)S=2^{204}-2^0\)

=>3S=\(2^{204}-1\)

Ta có \(2^3\equiv-1\left(mod9\right)=>2^{204}\equiv1\left(mod3\right)\)

=>\(=>2^{204}-1⋮9=>3S⋮9=>S⋮3\left(ĐPCM\right)\)

2 tháng 1 2018

thank

24 tháng 12 2017

Ta có S=1+2+22+23+...+259

\(\Rightarrow\)2S=2+22+23+24+...+260

\(\Rightarrow\)2S-S=260-1

do 2 chia 3 dư 1 \(\Rightarrow\)260 chia 3 dư 160\(\Rightarrow\)260 chia 3 dư 1

\(\Rightarrow\)260 -1 \(⋮\)3

Hay S\(⋮\)3 (dpcm)

24 tháng 12 2017

\(1+2+2^2+2^3+...+2^{59}\)

\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)

\(=3+2^2\left(1+2\right)+...+2^{58}\left(1+2\right)\)

\(=3+2^2\times3+...+2^{58}\times3\)

\(=3\times\left(1+2^2+...+2^{58}\right)⋮3\)

Vậy \(S⋮3\)

8 tháng 11 2017

4 + 4^3 + 4^5 + 4^7 + ... + 4^23

= ( 4 + 4^3 ) + ( 4^5 + 4^7 ) +.....+ ( 4^22 + 4^23)

=4( 1+16 ) + 4^5( 1+16 ) +....+ 4^22( 1+ 16 )

=4 x 17 + 4^5 x 17+....+ 4^22 x 17 chia hết cho 68

Câu 2:

1+3+3^2+3^3+....+3^2000

=( 1+3 +3^2 ) + ( 3^3 + 3^4 + 3^5 ) +.....+ ( 3^ 1998 + 3^1999 + 3^2000)

=1( 1+ 3 + 9 ) + 3^3 + ( 1+ 3 + 9 ) +......+ 3^1998+( 1+ 3 + 9 )

= 1 x 13+ 3^3 x 13 +......+ 3^1998 x 13 chia hết cho 13

k mk nha lần sau mk k lại

8 tháng 11 2017

Câu 1 nha : 4+4^3+4^5+4^7+....+4^23 = (4+4^3)+(4^5+4^7)+....+(4^21+4^23)

= 68 + 4^4.(4+4^3)+....+4^20.(4+4^3) = 68 + 4^4.68 + .... + 4^20.68

=68.(1+4^4+....+4^20) chia hết cho 68

Câu 2 nha 1+3+3^2+...+3^2000 = (1+3+3^2)+(3^3+3^4+3^5)+....+(3^1998+3^1999+3^2000)

= 13 + 3^3.(1+3+3^2)+....+3^1998.(1+3+3^2) = 13+3^3.13+....+3^1998.13

=13.(1+3^3+....+3^1998) chia hết cho 13