\(S=1+\frac{4}{5}+\frac{7}{5^2}+...+\frac{3x-2}{5^{x-1}}\)

Tính S?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019
https://i.imgur.com/2JQy98A.jpg
AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Lời giải:

a) ĐKXĐ: $5-4x\geq 0\Leftrightarrow x\leq \frac{5}{4}$

b) ĐKXĐ: \(\left\{\begin{matrix} 3x-4\neq 0\\ \frac{-5}{3x-4}\geq 0\end{matrix}\right.\Leftrightarrow 3x-4< 0\Leftrightarrow x< \frac{4}{3}\)

c) ĐKXĐ: $x^2+7\geq 0\Leftrightarrow x\in\mathbb{R}$

d)

ĐKXĐ: \(x^2-4x+4\geq 0\Leftrightarrow (x-2)^2\geq 0\Leftrightarrow x\in\mathbb{R}\)

n)

\(\left\{\begin{matrix} x+1\neq 0\\ \frac{3x-5}{x+1}\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} 3x-5\geq 0\\ x+1>0\end{matrix}\right.\\ \left\{\begin{matrix} 3x-5\leq 0\\ x+1< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x\geq \frac{5}{3}\\ x< -1\end{matrix}\right.\)

m)

ĐKXĐ: \(\left\{\begin{matrix} 3x-1\neq 0\\ \frac{x^2}{3x-1}\geq 0\end{matrix}\right.\Leftrightarrow 3x-1>0\Leftrightarrow x>\frac{1}{3}\)

g)

ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 5-2x>0\end{matrix}\right.\Leftrightarrow 1\leq x< \frac{5}{2}\)