K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

a) \(\frac{6^7}{4^3\cdot9^2}=\frac{2^7\cdot3^7}{2^6\cdot3^4}=2\cdot3^3=2\cdot27=54\)

b) \(\frac{12^3\cdot15^3}{4^3\cdot25^2\cdot9^2}=\frac{2^6\cdot3^3\cdot3^3\cdot5^3}{2^6\cdot5^4\cdot3^4}=\frac{3^2}{5}=1,8\)

c) \(\frac{2^{11}+3\cdot2^{10}}{10\cdot4^5}=\frac{2^{10}\left(2+3\right)}{2\cdot5\cdot2^{10}}=\frac{1}{2}=0,5\)

d) \(\frac{3^8\cdot2-3^6}{2\cdot17\cdot3^7}=\frac{3^6\left(3^2\cdot2-1\right)}{2\cdot17\cdot3^7}=\frac{1}{2\cdot3}=\frac{1}{6}\)

8 tháng 8 2016

\(A=\frac{1}{6.10}+\frac{1}{10.14}+\frac{1}{14.18}+\frac{1}{18.22}+\frac{1}{22.26}+\frac{1}{26.30}\)

  \(=\frac{1}{4}.\left(\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{22}+\frac{1}{22}-\frac{1}{26}+\frac{1}{26}-\frac{1}{30}\right)\)

     \(=\frac{1}{4}.\left(\frac{1}{6}-\frac{1}{30}\right)=\frac{1}{4}.\frac{2}{15}=\frac{1}{30}\)

\(B=\frac{5}{2.3}+\frac{5}{3.4}+\frac{5}{4.5}+...+\frac{5}{8.9}\)\(=5.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\right)\)     \(=5.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\right)\)

  \(=5.\left(\frac{1}{2}-\frac{1}{9}\right)=5.\frac{7}{18}=\frac{35}{18}\)

\(C=\left(\frac{7^2}{2.9}+\frac{7^2}{9.16}+....+\frac{7^2}{65.72}\right):\left(\frac{1}{3}-\frac{7}{36}\right)\)

   \(=7.\left(\frac{7}{2.9}+\frac{7}{9.16}+...+\frac{7}{65.72}\right):\frac{5}{36}\) \(=7.\left(\frac{1}{2}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{65}-\frac{1}{72}\right):\frac{5}{36}\)'

    \(=7.\left(\frac{1}{2}-\frac{1}{72}\right):\frac{5}{36}=7.\frac{35}{72}:\frac{5}{36}=\frac{49}{2}\)

\(D=\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{37.38.39}+\frac{2}{38.39.40}\)

     \(=2.\left(\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}+\frac{1}{38.39.40}\right)\)

     \(=2.\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}+\frac{1}{38.39}-\frac{1}{39.40}\right)\)

        \(=\frac{1}{2.3}-\frac{1}{39.40}=\frac{259}{1560}\)

\(E=\frac{202202}{1212}+\frac{202202}{2020}+\frac{202202}{3030}+\frac{202202}{4242}+\frac{202202}{5656}\)

    \(=202202.\left(\frac{1}{3.4.101}+\frac{1}{4.5.101}+\frac{1}{5.6.101}+\frac{1}{6.7.101}+\frac{1}{7.8.101}\right)\)

      \(=2002.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\right)\)

        \(=2002.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)

         \(=2002.\left(\frac{1}{3}-\frac{1}{8}\right)=2002.\frac{5}{24}=\frac{5005}{12}\)

     

    

21 tháng 1 2018

Phân số nào có mẫu số nhỏ hơn thì lớn hơn.

21 tháng 1 2018

a)  \(\frac{2}{3}\) và \(\frac{1}{4}\)

Ta có:  \(\frac{2}{3}=\frac{2\times4}{3\times4}=\frac{8}{12}\)

             \(\frac{1}{4}=\frac{1\times3}{4\times3}=\frac{3}{12}\)

Vậy................

18 tháng 8 2020

\(\frac{\frac{25}{108}.\frac{1151}{5}+\frac{187}{4}}{\frac{139}{30}:\frac{-41}{21}}\)=\(\frac{\frac{5755}{108}+\frac{187}{4}}{\frac{-973}{410}}\)=\(\frac{\frac{8531}{84}}{\frac{-973}{410}}\)=-241,0180

18 tháng 8 2020

\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right)\cdot230\frac{1}{5}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)

\(=\frac{\left(\frac{53}{4}-\frac{59}{27}-\frac{65}{6}\right)\cdot\frac{1151}{5}+\frac{187}{4}}{\frac{139}{30}:\left(-\frac{41}{21}\right)}\)

\(=\frac{\frac{25}{108}\cdot\frac{1151}{5}+\frac{187}{4}}{\frac{139}{30}\cdot\left(-\frac{21}{41}\right)}=\frac{\frac{2701}{27}}{-\frac{973}{410}}\)

Tính nốt vì số dữ quá , lần sau để số ít thôi

2 tháng 1 2018

\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)

\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)

\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)  

Có: \(\frac{1}{1+5+5^2+...+5^8}>0\)              và      \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)

\(\Rightarrow A>B\)