Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+ac-b^2-bc=\left(a^2-b^2\right)+\left(ac-bc\right)=\left(a+b\right)\left(a-b\right)+c\left(a-b\right)=\)\(\left(a-b\right)\left(a+b+c\right)\)
Tương tự:
\(b^2+ab-c^2-ac=\left(b-c\right)\left(a+b+c\right)\)
\(c^2+bc-a^2-ab=\left(c-a\right)\left(a+b+c\right)\)
\(Q=\frac{1}{\left(b-c\right)\left(a-b\right)\left(a+b+c\right)}+\frac{1}{\left(c-a\right)\left(b-c\right)\left(a+b+c\right)}+\frac{1}{\left(a-b\right)\left(c-a\right)\left(a+b+c\right)}\)
\(=\frac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)}=0\)
Ta có
\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}=\frac{a^2+ab-bc-ab}{\left(a+b\right)\left(a+c\right)}=\frac{a\cdot\left(a+b\right)-b\cdot\left(c+a\right)}{\left(a+b\right)\left(c+a\right)}=\frac{a}{a+c}-\frac{b}{a+b}\left(1\right)\)
tương tự
\(\frac{b^2-bc}{\left(a+b\right)\left(b+c\right)}=\frac{b}{a+b}-\frac{c}{b+c}\left(2\right)\)
\(\frac{c^2-ab}{\left(c+a\right)\left(b+c\right)}=\frac{c}{c+b}-\frac{a}{a+b}\left(3\right)\)
Cộng (1);(2) và (3) ta có
\(\frac{a^2-bc}{\left(a+b\right)\left(a+c\right)}+\frac{b^2-ac}{\left(a+b\right)\left(b+c\right)}+\frac{c^2-ab}{\left(a+c\right)\left(c+b\right)}=\frac{a}{a+c}-\frac{b}{a+b}+\frac{b}{a+b}-\frac{c}{b+c}+\frac{c}{c+b}-\frac{a}{a+b}=0 \)
\(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)\)
\(=a^2\left(b-c\right)-b^2\left(a-b\right)-b^2\left(b-c\right)+c^2\left(a-b\right)\)
\(=\left(b-c\right)\left(a^2-b^2\right)-\left(a-b\right)\left(b^2-c^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a+b-b-c\right)=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)
\(ab^2-ac^2-b^3+bc^2\)
\(=b^2\left(a-b\right)-c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(b^2-c^2\right)=\left(a-b\right)\left(b-c\right)\left(b+c\right)\)
Vậy \(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{ab^2-ac^2-b^3+bc^2}\)
\(=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(b+c\right)}=\frac{a-c}{b+c}\)
Có a2(b-c) + b2(c-a) + c2(a-b)
= a2(b-c) - b2(a-c) + c2(a-b)
= a2(b-c) - b2(b-c+a-b) + c2(a-b)
= a2(b-c) - b2(b-c) - b2(a-b) + c2(a-b)
=[a2(b-c) - b2(b-c)] - [b2(a-b) - c2(a-b)]
=(b-c)(a2-b2) - (a-b)(b2-c2)
=(b-c)(a-b)(a+b) - (a-b)(b-c)(b+c)
=(b-c)(a-b)[(a+b)-(b+c)]
=(b-c)(a-b)(a-c)
Có ab2 - ac2 - b3 + bc2
= (ab2-ac2) - (b3-bc2)
=a(b2-c2) - b(b2-c2)
=(b2-c2)(a-b)
=(b-c)(b+c)(a-b)
Có a2(b-c) + b2(c-a) + c2(a-b) / ab2 - ac2 - b3 + bc2
= (b-c)(a-b)(a-c) / (b-c)(b+c)(a-b)
= (a-c) / (b+c)
Thay \(ab+bc+ca=1\) ta có:
\(1+a^2=ab+bc+ca+a^2=b\left(c+a\right)+a\left(c+a\right)=\left(c+a\right)\left(a+b\right)\)
Tương tự: \(1+b^2=\left(b+c\right)\left(a+b\right);\) \(1+c^2=\left(c+a\right)\left(b+c\right)\)
\(\Rightarrow\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)
\(\Rightarrow\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}=1\). Vậy biểu thức đó rút gọn lại bằng 1.
AD phân tích đa thức thành nhân tử ở tử thức và mẫu thức của từng phân thức
=\(a^3+b^3+c^3-3abc\)