Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, dk \(x\ge0.x\ne1\)
\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)
=\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)
phan b,c ban tu lam not nhe dai lam mk ko lam dau mk co vc ban rui
Sửa lại đề nha , đề đúng nè :
\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{x}{x-1}\right):\)\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{x}{x+2\sqrt{x}+1}\right)\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\)\(\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{x}{\left(\sqrt{x}+1\right)^2}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x}{\left(\sqrt{x}+1\right)^2}\)
\(=\frac{x-\sqrt{x}-x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{x+\sqrt{x}-x}{\left(\sqrt{x}+1\right)^2}\)
\(=\frac{-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\sqrt{x}}=-\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(\)
M= \(\sqrt{2}+1-\) \(\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}+1-\sqrt{2}+1=2\)
N=\(\sqrt{1+2\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{1+2\left(\sqrt{2}+1\right)}=\) \(\sqrt{1+2\sqrt{2}+2}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
P= \(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}+\frac{2\sqrt{x}.\sqrt{x}}{\sqrt{x}}\) (dk \(x>0\))
=\(\sqrt{x}+1+2\sqrt{x}=3\sqrt{x}+1\)
Q= \(\sqrt{\left(\sqrt{x}+1\right)^2}+\sqrt{\left(\sqrt{x}-1\right)^2}\) (dk \(x\ge0\) )
=\(\left|\sqrt{x}+1\right|+\left|\sqrt{x}-1\right|\)
th1 \(\sqrt{x}\ge1\Leftrightarrow x\ge1\) Q=\(\sqrt{x}+1+\sqrt{x}-1=2\sqrt{x}\)
th2 \(0\le x< 1\) Q=\(\sqrt{x}+1+1-\sqrt{x}=2\)
a) \(M=\sqrt{2}+1-\sqrt{1,5.2-2.\sqrt{2}}\)
\(=\sqrt{2}+1-\sqrt{2.\left(1,5-\sqrt{2}\right)}\)\(=\sqrt{2}+1-\sqrt{2}.\sqrt{1,5-\sqrt{2}}\)
\(=\sqrt{2}.\left(1+1,5-\sqrt{2}\right)+1=\sqrt{2}.\left(2,5-\sqrt{2}\right)+1\)
\(=\sqrt{2}.2,5-2+1=\sqrt{2}.2,5-1\)
P/s: Theo em thì em nghĩ là đúng '-' Khoảng 90% :)
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
bạn tách hằng đẳng thức trong căn là OK nha
mik phân `1 đẳng thức
x+2 căn x-1= x-1+2 căn x-1+1= (căn x-1+1)^2
hằng đẳng thức số 1