\(\frac{\sqrt{x}+1}{2\sqrt{x}-2}-\frac{\sqrt{x}+1}{2\sqrt{x}+2}-\frac{x+1}{1-x}\) ) ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

\(Q=\left(\frac{\sqrt{x}^2-1}{2\sqrt{x}}\right)^2.\left[\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

\(Q=\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\sqrt{x}}\right].\left[\frac{\left(\sqrt{x}-1+\sqrt{x}+1\right)\left(\sqrt{x}-1-\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

\(Q=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\sqrt{x}}.\frac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(Q=\frac{-4\sqrt{x}}{2\sqrt{x}}=-2\)

4 tháng 7 2018

a)  ĐK: \(x>0;x\ne1\)

\(P=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)

\(=\left(\frac{\left(\sqrt{x}-1\right)^2}{x-1}-\frac{\left(\sqrt{x}+1\right)^2}{x-1}\right)\left(\frac{1-x}{2\sqrt{x}}\right)^2\)

\(=\frac{-4\sqrt{x}}{x-1}.\frac{\left(1-x\right)^2}{4x}\)

\(=\frac{1-x}{\sqrt{x}}\)

31 tháng 7 2019

#)Giải :

Bài 1 :

a) \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)

\(=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right]\frac{\left(1-x\right)^2}{2}\)

\(=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x+1}\right)^2}{2}\)

\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)

\(=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b) Để \(P>0\Rightarrow\hept{\begin{cases}\sqrt{x}>0\\1-\sqrt{x}>0\end{cases}\Rightarrow0< x< 1}\)

c) \(P=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu ''='' xảy ra khi \(x=\frac{1}{4}\)

21 tháng 5 2018

a, \(A=\left(\frac{x-2}{\sqrt{x}\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}=\left(\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x-1+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}}.\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

21 tháng 5 2018

Để \(2A=2\sqrt{5}+5\) thì : \(2.\frac{\sqrt{x}+1}{\sqrt{x}}=2\sqrt{5}+5\)

\(\Leftrightarrow\frac{2\sqrt{x}+2}{\sqrt{x}}=2\sqrt{5}+5\)

\(\Leftrightarrow2\sqrt{x}+2=\left(2\sqrt{5}\right)x+5\sqrt{x}\)

\(\Leftrightarrow\left(2\sqrt{5}\right)x+3\sqrt{x}=2\)\(\Leftrightarrow\left(2\sqrt{5}+3\right)\sqrt{x}=2\Leftrightarrow\sqrt{x}=\frac{2}{2\sqrt{5}+3}=\frac{4\sqrt{5}-6}{11}\Leftrightarrow x=\left(\frac{4\sqrt{5}-6}{11}\right)^2\left(tm\right)\)

Vậy \(x=\left(\frac{4\sqrt{5}-6}{11}\right)^2\)thì \(2A=2\sqrt{5}+5\)

21 tháng 8 2017

Đề có sai ko bn?Phương Phan Thùy