Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(A=\dfrac{x^2-3+x+3}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x}=\dfrac{x\left(x+1\right)}{x\left(x-3\right)}=\dfrac{x+1}{x-3}\)
b: Để A=3 thì 3x-9=x+1
=>2x=10
hay x=5
Bài 2:
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}:\dfrac{x+2-x}{x+2}\)
\(=\dfrac{-6}{x-2}\cdot\dfrac{1}{2}=\dfrac{-3}{x-2}\)
b: Để A nguyên thì \(x-2\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;1;5;-1\right\}\)
\(=\dfrac{3x^2-x+3-x^2+2x-1-2x^2-2x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-1}{x^2+x+1}\)
có phải ý bạn là:
rút gọn biểu thức:
\(\frac{x}{\left(x+1\right)^3}\cdot\frac{1}{x+1}+\frac{1}{x^2+2x+1}\cdot\frac{1}{x^2+1}:\frac{x-1}{x^3}\)
2: ĐKXĐ: \(x\ne2\)
\(\dfrac{3x^2+6x+12}{x^3-8}=\dfrac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3}{x-2}\)
1) \(A=x^2-6x+9-2x^3+2x=-2x^3+x^2-4x+9\)
2) \(B=x^3-3x+2x^2-6-x^3+1=2x^2-3x-5\)
Lời giải:
$(2x+1)^2-3(x-1)^2-(x+1)(x-1)$
$=(4x^2+4x+1)-3(x^2-2x+1)-(x^2-1)$
$=4x^2+4x+1-3x^2+6x-3-x^2+1$
$=(4x^2-3x^2-x^2)+(4x+6x)+(1-3+1)$
$=10x-1$
`(x+1)^2-(x-1)^2+3(x+1)(x-1)`
`=(x+1+x-1)(x+1-x+1)+3(x^2-1)`
`=2x.2+3x^2-3`
`=3x^2+4x-3`
Lời giải:
$(x+1)^2-(x-1)^2-3(x+1)x(x-1)$
$=(x+1-x+1)(x+1+x-1)-3x(x^2-1)$
$=4x-3x(x^2-1)=x[4-3(x^2-1)]=x(7-3x^2)$