K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

\(U=\left(x+3y\right)^3-\left(x+3y\right)\left(x^2-3xy+9y^2\right)-2x\left(x-2\right)^2=x^3+9x^2y+27xy^2+27y^3-x^3-27y^3-2x^3+8x^2-8x=-2x^3+9x^2y+27xy^2+8x^2-8x\)Thay : x = 1 ; y = 2 , ta có :

\(U=-2.1+9.1.2+27.1.4+8.1-8.1=124\)

\(U=x^3+9x^2y+27xy^2+27y^3-x^3-27y^3-2x\left(x^2-4x+4\right)\)

\(=9x^2y+27xy^2-2x^3+8x^2-8x\)

\(=9\cdot1\cdot2+27\cdot1\cdot2^2-2\cdot1^3+8\cdot1^2-8\cdot1\)

\(=18+108-2-8-8=108\)

1: \(F=\left(\dfrac{-1}{2}-2\right)^3-\left(-\dfrac{1}{2}+3\right)^3+\left(-2+\dfrac{3}{2}\right)^3+\left(-\dfrac{1}{2}+1\right)^2\)

\(=\dfrac{-125}{8}-\dfrac{125}{8}+\dfrac{-1}{8}+\dfrac{1}{4}\)

\(=\dfrac{-251}{8}+\dfrac{1}{4}=\dfrac{-249}{8}\)

2:\(N=\left(-1-1\right)^2-\left(-1+\dfrac{1}{8}\right)+\left(-1+1\right)^3\)

=4+1-1/8

=5-1/8=39/8

AH
Akai Haruma
Giáo viên
23 tháng 8 2019

Lời giải:

Những bài này sử dụng những hằng đẳng thức đáng nhớ.

Vì $x=-2$ nên $x+2=0$. Ta có:

\(A=(2x-3)^2-(x-3)^3+(4x+1)[(4x)^2-4x.1+1^2]\)

\(=(2x-3)^2-(x-3)^3+(4x)^3+1^3\)

\(=[2(x+2)-7]^2-(x+2-5)^3+8x^3+1\)

\(=(-7)^2-(-5)^3+8.(-2)^3+1=111\)

--------------------

\(B=(3x-y)^3-[x^3+(2y)^3]+(x+3)^2\)

\(=(3.1-2)^3-(1^3+8.2^3)+(1+3)^2=-48\)

----------------

Vì $x=\frac{1}{2}; y=\frac{-1}{2}\Rightarrow x+y=0$

\(C=(x-5y)^2+(2x-3y)^3-(x-y)^3-[(2x)^3+(3y)^3]\)

\(=(x+y-6y)^2+[2(x+y)-5y]^3-(x+y-2y)^3-[8(x^3+y^3)+19y^3]\)

\(=(-6y)^2+(-5y)^3-(-2y)^3-19y^3\)

\(=36y^2-136y^3=36.(\frac{-1}{2})^2-136(\frac{-1}{2})^3=26\)

\(F=\left(\dfrac{-1}{2}-2\right)^3-\left(\dfrac{-1}{2}+3\right)^2+\left(-2+\dfrac{3}{2}\right)^3+\left(-\dfrac{1}{2}+1\right)^2\)

\(=\dfrac{-125}{8}-\dfrac{25}{4}+\dfrac{1}{8}+\dfrac{1}{4}\)

\(=\dfrac{-124}{8}-\dfrac{24}{4}\)

=-15,5-6=-21,5

\(F=\left(-\dfrac{1}{2}-2\right)^3-\left(-\dfrac{1}{2}+3\right)^2+\left(-2+\dfrac{3}{2}\right)^3+\left(-\dfrac{1}{2}+1\right)^2\)

=-125/8+25/4-1/8+1/4

=-37/4

1 tháng 11 2020

a) \(A=3x\left(x^2-2x+3\right)-x^2.\left(3x-2\right)+5\left(x^2-x\right)\)

\(=3x^3-6x^2+9x-3x^3+2x^2+5x^2-5x\)

\(=x^2+4x\)

Thay \(x=5\)vào biểu thức ta có: \(A=5^2+4.5=25+20=45\)

b) \(B=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

Thay \(x=10\)\(y=-1\)vào biểu thức ta có: 

\(B=10^3-\left(-1\right)^3=1000+1=1001\)

21 tháng 8 2019

\(A=\left(3x-y\right)^2-\left(3x+y\right)^2=\left(3x-y+3x+y\right)\left(3x-y-3x-y\right)\)

\(=6x.\left(-2y\right)=6.\frac{1}{2}.\left(-2.\frac{1}{3}\right)=2.\left(-1\right)=-2\)

21 tháng 8 2019

\(B=\left(2x+3y\right)^2+\left(2x-3y\right)^2\)

\(=\left(2.\frac{1}{2}+3.\frac{1}{3}\right)^2+\left(2.\frac{1}{2}-3.\frac{1}{3}\right)^2\)

\(=\left(1+1\right)^2+\left(1-1\right)^2\)

\(=4+0=4\)

12 tháng 7 2024

1; \(x^2\) + 3\(x^2\) + 3\(x\) = 4\(x^2\) + 3\(x\) (1) 

Thay \(x=99\) vào (1) ta có:

4.992 + 3.99 = 4.9801 + 297 = 39204 + 297 = 39501