K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2021

Bài 2.

a) 1013 = (100+1)3 = 1003+3.1002.1+3.100.12+13 

   = 1000000+30000+300+1 = 1030301

b) 2993 = (300-1)3 = 3003-3.3002.1+3.300.12-13

   = 27000000 - 270000 + 900 -1 = 26730899

c) 993 = (100-1)3 = 1003-3.1002.1+3.100.12-1

   = 1000000 - 30000 + 300 -1 = 970299

7 tháng 9 2021

\(1,\\ b,A=\left(u-v\right)^3+3uv\left(u+v\right)\\ A=u^3-3u^2v+3uv^2-v^3+3u^2v+3uv^2=u^3-v^3\\ c,6\left(c-d\right)\left(c+d\right)+2\left(c-d\right)^2-\left(c-d\right)^3\\ =6c^2-6d^2+2c^2-4cd+2d^2-c^3+3c^2d-3cd^2+d^3\\ =8c^2-c^3-4d^2-4cd+3c^2d-3cd^2+d^3\)

\(2,\\ a,101^3=\left(100+1\right)^3\\ =100^3+3\cdot10000\cdot1+3\cdot100\cdot1+1\\ =1000000+30000+300+1=1030301\\ b,299^3=\left(300-1\right)^3\\ =300^3-3\cdot90000\cdot1+3\cdot300\cdot1-1\\ =27000000-270000+900-1\\ =26730899\\ c,99^3=\left(100-1\right)^3\\ =100^3-3\cdot10000\cdot1+3\cdot100\cdot1-1\\ =1000000-30000+300-1=970299\)

8 tháng 4 2019

a) A = u 3   +   6 uv 2   –   v 3 .

b)  B = ( c + 2 d ) + ( c − 2 d 3 = 8 c 3 .

6 tháng 9 2021

a. A = (a + b)3 - (a - b)3

A = \(\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)

A = (a + b - a + b)\(\left[a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right]\)

A = 2b(a2 + a2 + a2 + 2ab - 2ab + b2 - b2 + b2)

A = 2b(3a2 + b2)

A = 6a2b + 2b3

17 tháng 6 2021

a, \(I=s\left(s^2-t\right)+\left(t^2+s\right)=s^3-st+t^2+s\)

Thay t = -1 và s = 1 vào biểu thức trên ta được :

\(1+1+1+1=4\)

b, \(N=u^2\left(u-v\right)-v\left(v^2-u^2\right)=u^2\left(u-v\right)+v\left(u+v\right)\left(u-v\right)\)

\(=\left(u-v\right)\left(u^2+v\left(u+v\right)\right)\)

Thay \(u=0,5=\frac{1}{2};v=-\frac{1}{2}\)

\(=\left(\frac{1}{2}+\frac{1}{2}\right).\frac{1}{4}=\frac{1}{4}\)

6 tháng 8 2020

a) 4x^2(5x^3 - 2x + 3)

= 20x^5 - 8x^3 + 12x^2

b) 2u(1 + u - v) - v(1 - 2u + v)

= 2u + 2u^2 - v - v^2

30 tháng 7 2018

u^2v^2(u+v)^2-(u^2v+uv^2)^2 - Step-by-Step Calculator - Symbolab

Tham khảo ở đó nhé!

30 tháng 7 2018

bn có thể tham khảo mà đúng ko 

20 tháng 8 2018

a) b 3 + 3 b 2 + 2 b 3 + 1 .          b) 0.

4 tháng 1 2018

1) Xét 1/k^2 = 1/(k.k) < 1/[k(k - 1)] = 1/(k - 1) - 1/k 
Do đó : 
1/2^2 < 1/1 - 1/2 
1/3^2 < 1/2 - 1/3 
... 
1/n^2 < 1//(n - 1) - 1/n 

Suy ra : 
1+ (1/2^2+1/3^2+...+1/n^2) < 1 + (1/1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + .. + [1/(n - 1) - 1/n] = 2 - 1/n < 2 (đpcm) 

2) Đặt A = (u+1/u)^2 + (v+1/v)^2 
Áp dụng BĐT 2(a^2 + b^2) >= (a + b)^2 (dễ cm BĐT này) 
Ta có : 2A = 2[(u+1/u)^2 + (v+1/v)^2] >= (u + 1/u + v + 1/v)^2 = (1 + 1/u + 1/v)^2 (vì u + v = 1) (1) 
Nhận xét rằng ta có (u + v)(1/u + 1/v) >= 4 (cũng dễ cm được BĐT này) 
=> 1/u + 1/v >= 4 (do u + v = 1) 
=> (1 + 1/u + 1/v)^2 >= (1 + 4)^2 = 25 (2) 
Từ (1)(2) ta có 2A >= 25 hay A >= 25/2 (đpcm) 
Đẳng thức xảy ra khi u = v = 1/2

6 tháng 8 2020

Sử dụng BĐT Svacxo ta được :

\(LHS\ge\frac{\left(u+\frac{1}{u}+v+\frac{1}{v}\right)^2}{2}=\frac{\left(1+\frac{1}{u}+\frac{1}{v}\right)^2}{2}\)

Lại tiếp tục sử dụng BĐT Svacxo ta được :

\(\frac{1}{u}+\frac{1}{v}=\frac{1^2}{u}+\frac{1^2}{v}=\frac{\left(1+1\right)^2}{u+v}=\frac{4}{u+v}=4\)

Khi đó \(\frac{\left(1+\frac{1}{u}+\frac{1}{v}\right)^2}{2}\ge\frac{\left(1+4\right)^2}{2}=\frac{5^2}{2}=\frac{25}{2}\)

Đẳng thức xảy ra khi và chỉ khi \(u=v=\frac{1}{2}\)

Vậy ta có điều phải chứng minh

24 tháng 7 2016

2u(1+u-v) - v(1-2u+v)

= 2u + 2u^2 - 2uv - v + 2uv - v^2

= 2u + 2u^2 - v - v^2

= 2u(1+u) - v(1+v)