K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

2A=22+23+....+22022)

2A-A=(22+23+...+22022)-(2+22+....+22021)

A=22022-2

Đây nhé!

11 tháng 10 2021

A = 1 + 2 + 22 + 23 + 24 + ..... + 22021

2A = 2 + 22 + 23 + 24 + 25 + ..... + 22022

2A - A = ( 2 + 22 + 23 + 24 + 25 + ..... + 22022 ) - ( 1 + 2 + 22 + 23 + 24 + ..... + 22021 )

A = 22022 - 1

12 tháng 10 2021

cảm ơn bạn nhé

mà bạn ơi kết quả cuối cùng là A=2022-1 

20 tháng 12 2021

Câu 2:

\(a,\Rightarrow x=-23+15=-8\\ b,\Rightarrow5\left(x+4\right)=85\\ \Rightarrow x+4=17\Rightarrow x=13\\ c,\Rightarrow5^{x+2}=24+1=25=5^2\\ \Rightarrow x+2=2\Rightarrow x=0\\ d,\Rightarrow x+4+x+5⋮9\\ \Rightarrow2x+9⋮9\\ \Rightarrow2x⋮9\Rightarrow x\in\left\{0;9\right\}\left(0< x< 10\right)\)

10 tháng 7 2017

1)5x+1 + 6.5x+1 = 875

   5x+1 ( 1+6 ) = 875

   5x+1 . 7 = 875

5x+1 = 875 : 7

5x+1 = 125

5x+1 = 53

x+1 = 3

x = 3 - 1

x = 2

2)3x+1 + 3x+3 = 810

  3x . 3 + 32 . 3x+1 = 810

  3x . 3 + 9 . 3x . 3 = 810

  3x .3 ( 1 + 9 ) = 810

  3x+1 . 10 = 810

  3x+1 = 810 : 10

  3x+1 = 81

  3x+1 = 34 

x+1 = 4

x = 4-1

x = 3

11 tháng 10 2021

mn người giúp mik với

6 tháng 10 2017

Mình làm ngắn gọn nhé.

\(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}\)

\(\Rightarrow A=2^{51}-1\)

6 tháng 10 2017

\(B=1+3+...+3^{66}\)

\(3B=3+3^2+...+3^{67}\)

\(2B=3+3^2+...+3^{67}-1-3-...-3^{66}\)

\(2B=3^{67}-1\)

\(B=\frac{3^{67}-1}{2}\)

6 tháng 11 2021

\(A=1+2^2+2^3+...+2^{2022}\)

\(\Rightarrow2A=2+2^3+2^4+...+2^{2023}\)

\(\Rightarrow A=2A-A=2+2^3+...+2^{2023}-1-2^2-...-2^{2022}=2-1+2^{2023}-2^2=-3+2^{2023}\)

6 tháng 11 2021

A = 1 + 22 +  23 + ..... + 22021 + 22022

2A = 2(1 + 22 + 23 + ..... + 22021 + 22022)

2A = 2 + 23 +  24 + ..... + 22022 + 22023

2A - A = (2+23 + 24 + ..... + 22022 + 22023) - (1 + 22 + 23 + .... + 22021 + 22022 )

Thấy sai sai sao í -))

13 tháng 9 2018

chỉ cần lấy máy tính thôi nhé

4 tháng 8 2018

a) ta có: A = 3^0 + 3^1 + 3^2 + ...+ 3^100

=> 3A = 3^1 + 3^2 + 3^3 + ...+ 3^101

=> 3A-A = 3^101 - 3^0

2A = 3^101 - 1

\(A=\frac{3^{101}-1}{2}\)

b) D = 1 - 5 + 5^2 - 5^3 + ...+ 5^98 - 5^99

=> 5D = 5 - 5^2 + 5^3 - 5^4+...+ 5^99 - 5^100

=> 5D+D = -5^100 + 1

6D = -5^100 + 1

\(D=\frac{-5^{100}+1}{6}\)