Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}=2\sqrt{4.2.5\sqrt{4.3}}-2\sqrt{\sqrt{25.3}}-3\sqrt{5\sqrt{16.3}}\)
= \(2.2\sqrt{2.5.2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5.4\sqrt{3}}=4.2\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-3.2\sqrt{5\sqrt{3}}\)
= \(\sqrt{5\sqrt{3}}\left(8-2-6\right)=\sqrt{5\sqrt{3}}.0=0\)
b/ \(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}=2\sqrt{2.4\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{4.5\sqrt{3}}\)
= \(4\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=4\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)
\(\frac{\sqrt{9-4\sqrt{5}}}{2-\sqrt{5}}\)
= \(\frac{\sqrt{2^2-2\sqrt{5}2+\sqrt{5^2}}}{2-\sqrt{5}}\)
= \(\frac{\sqrt{\left(2-\sqrt{5}\right)^2}}{2-\sqrt{5}}\)
= \(\frac{\sqrt{5}-2}{2-\sqrt{5}}\)
= -1
Chúc bạn làm bài tốt :)
\(a)\) \(B=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=a-b\)
\(b)\) \(B=a-b=\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)\(\Rightarrow\)\(B^2=\left(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\right)^2=2+\sqrt{3}-2\sqrt{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+2-\sqrt{3}\)
\(B^2=4-2\sqrt{4-3}=4-2=2\)\(\Rightarrow\)\(B=\sqrt{2}\) ( vì \(B>0\) )
...
b, \(\frac{\sqrt{3}}{2+\sqrt{3}}-\frac{\sqrt{3}}{2-\sqrt{3}}\) = \(\frac{\sqrt{3}\left(2-\sqrt{3}\right)-\sqrt{3}\left(2+\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)=\(\frac{2\sqrt{3}-3-2\sqrt{3}-3}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)=\(\frac{-6}{4-3}\)=-6
c,\(\frac{2}{\sqrt{5}-2}-\frac{2}{\sqrt{5}+2}\)=\(\frac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)=\(\frac{2\sqrt{5}+4-2\sqrt{5}+4}{\sqrt{5}^2-2^2}\)=\(\frac{8}{1}\)=8
\(\sqrt{300}-\sqrt{27}+4\sqrt{3}\)
=\(10\sqrt{3}-3\sqrt{3}+4\sqrt{3}\)
=\(11\sqrt{3}\)
\(\sqrt{300}-\sqrt{27}+4\sqrt{3}\)
\(=\sqrt{10^2.3}-\sqrt{3^2.3}+4\sqrt{3}\)
\(=10\sqrt{3}-3\sqrt{3}+4\sqrt{3}\)
\(=11\sqrt{3}\)
\(\frac{2+2\sqrt{5}}{3-\sqrt{5}}=\frac{\left(2+2\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\frac{6+2\sqrt{5}+6\sqrt{5}+10}{3^2-\sqrt{5}^2}=\frac{16+8\sqrt{5}}{4}=\frac{4\left(4+2\sqrt{5}\right)}{4}=4+2\sqrt{5}\)
Đặt: \(P=\left(\sqrt{2+\sqrt{3}}-\sqrt{3+\sqrt{5}}\right)^2\)
=> \(2P=2\left(\sqrt{2+\sqrt{3}}-\sqrt{3+\sqrt{5}}\right)^2\)
\(2P=\left(\sqrt{2}.\sqrt{2+\sqrt{3}}-\sqrt{2}.\sqrt{3+\sqrt{5}}\right)^2\)
\(2P=\left(\sqrt{4+2\sqrt{3}}-\sqrt{6+2\sqrt{5}}\right)^2\)
\(2P=\left(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\right)^2\)
\(2P=\left(\left(\sqrt{3}+1\right)-\left(\sqrt{5}+1\right)\right)^2\)
\(2P=\left(\sqrt{3}-\sqrt{5}\right)^2=3+5-2\sqrt{15}=8-2\sqrt{15}\)
=> \(P=4-\sqrt{15}\)