\(\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

giải gấp giúp e nha

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2020

Trả lời:

\(D=\sqrt{11-6\sqrt{2}}-3+\sqrt{2}\)

\(D=\sqrt{9-6\sqrt{2}+2}-3+\sqrt{2}\)

\(D=\sqrt{\left(3-\sqrt{2}\right)^2}-3+\sqrt{2}\)

\(D=3-\sqrt{2}-3+\sqrt{2}\)

\(D=0\)

\(E=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(E=\sqrt{16+8\sqrt{7}+7}-\sqrt{7}\)

\(E=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(E=4+\sqrt{7}-\sqrt{7}\)

\(E=4\)

24 tháng 6 2019

\(\sqrt{8-2\sqrt{7}}-\sqrt{23-8\sqrt{7}}=\) \(\sqrt{1-2\sqrt{7}+7}-\sqrt{7-2.4.\sqrt{7}+16}\)

\(=\sqrt{\left(1-\sqrt{7}\right)^2}-\sqrt{\left(\sqrt{7}-4\right)^2}\)

\(=\sqrt{7}-1-\left(-\sqrt{7}+4\right)\)

\(=\sqrt{7}-1+\sqrt{7}-4\)\(=2\sqrt{7}-5\)

chúc bn học tốt

=\(\sqrt{\left(\sqrt{7}-1\right)^2}\)\(\sqrt{\left(4-\sqrt{7}\right)^2}\)

\(\sqrt{7}\)- 1 - 4 + \(\sqrt{7}\)

\(2\sqrt{7}\)-5

đ/á ra hơi kì

#mã mã#

28 tháng 7 2020

Bài 2 :

a) Sửa đề :

 \(A=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)

\(A=\sqrt{3}-1-\sqrt{3}\)

\(A=-1\)

b) \(B=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(B=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(B=\sqrt{2}+1-\sqrt{2}+1\)

\(B=2\)

c) \(C=\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

\(C=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(C=2-\sqrt{3}+2+\sqrt{3}\)

\(C=4\)

d) \(D=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(D=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(D=4+\sqrt{7}-\sqrt{7}\)

\(D=4\)

28 tháng 7 2020

Bài 1 :

a) Để \(\sqrt{\left(x-1\right)\left(x-3\right)}\) có nghĩa

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)

TH1 :\(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow x\ge3}\)

TH2 : \(\hept{\begin{cases}x-1\le0\\x-3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\le3\end{cases}\Leftrightarrow}x\le1}\)

Vậy để biểu thức có nghĩa thì \(\orbr{\begin{cases}x\ge3\\x\le1\end{cases}}\)

b) Để \(\sqrt{\frac{1-x}{x+2}}\)có nghĩa

\(\Leftrightarrow\frac{1-x}{x+2}\ge0\)

TH1 : \(\hept{\begin{cases}1-x\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}\Leftrightarrow}-2\le x\le1}\)

TH2 : \(\hept{\begin{cases}1-x\le0\\x+2\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le-2\end{cases}\Leftrightarrow x\in\varnothing}\)

Vậy để biểu thức có nghĩa thì \(-2\le x\le1\)

19 tháng 6 2017

=\(\sqrt{4^2+2\times4\times\sqrt{7}+\left(\sqrt{7}\right)^2}\)

\(\sqrt{\left(4+\sqrt{7}\right)^2}\)=   \(4+\sqrt{7}\)

19 tháng 6 2017

=\(\sqrt{4^2+2\times4\times\sqrt{7}+\left(\sqrt{7}\right)^2}\)                                                                                                                                           =\(\left(\sqrt{4+\sqrt{7}}\right)^2\)                                                                                                                                                                  =\(\left|4+\sqrt{7}\right|\)                                                                                                                                                                            =\(4+\sqrt{7}\)

14 tháng 8 2020

Đặt:    \(B=\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}\)

=>    \(B^2=7+\sqrt{5}+7-\sqrt{5}+2\sqrt{\left(7+\sqrt{5}\right)\left(7-\sqrt{5}\right)}\)

=>   \(B^2=14+2\sqrt{49-5}\)

=>   \(B^2=14+2\sqrt{44}\)

=>   \(A=\frac{\sqrt{14+4\sqrt{11}}}{7+2\sqrt{11}}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

=>   \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)

=>   \(A=\sqrt{\frac{2}{7+2\sqrt{11}}}-\sqrt{2}+1\)

ĐỀ BÀI CHẮC SAI RỒI PHẢI DƯỚI MẪU PHẢI LÀ    \(\sqrt{7+2\sqrt{11}}\)    THÌ LÚC ĐÓ BIỂU THỨC A RA ĐẸP HƠN !!!!

NẾU SỬA ĐỀ BÀI NHƯ TRÊN:

=>    \(A=\frac{\sqrt{2}.\sqrt{7+2\sqrt{11}}}{\sqrt{7+2\sqrt{11}}}-\left(\sqrt{2}-1\right)\)

=>   \(A=\sqrt{2}-\sqrt{2}+1\)

=>   \(A=1\)

ĐÓ BÂY GIỜ RA A  = 1 RẤT ĐẸP

10 tháng 9 2016

\(M>0\Leftrightarrow M^2=\left(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\right)^2=4+\sqrt{7}+4-\sqrt{7}-2\sqrt{4+\sqrt{7}}.\sqrt{4-\sqrt{7}}..\)

\(M^2=8-2.\sqrt{16-7}=8-6=3\)

\(M=\sqrt{3}.\)

10 tháng 9 2016

bẹn Nguyễn Thị Thùy Dương ơi, 8 - 6 =3 là sai r đó nha

19 tháng 7 2019

\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(\sqrt{7}-1-\left(1+\sqrt{7}\right)\)

\(=\sqrt{7}-1-\sqrt{7}-1\)

= -2

29 tháng 7 2020

\(A=\sqrt{14+6\sqrt{5}}+\sqrt{14-6\sqrt{5}}\)

\(A=\sqrt{9+6\sqrt{5}+5}+\sqrt{9-6\sqrt{5}+5}\)

 \(A=\sqrt{\left(3+\sqrt{5}\right)^2}+\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(A=3+\sqrt{5}+3-\sqrt{5}=6\)

b) \(B=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(B=\sqrt{3-4\sqrt{3}+4}-\sqrt{3+4\sqrt{3}+4}\)

\(B=\sqrt{\left(\sqrt{3}-2\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(B=2-\sqrt{3}-\sqrt{3}-2=-2\sqrt{3}\)

29 tháng 7 2020

Câu a tách 14 thành 5+9 . Có hằng đẳng thức

Câu b tương tự tách 7 thành 4+ 3 nhé