Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a) \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
b) \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Bài 1:
a, \(x\left(x+4\right)+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)
Vậy \(x=-4\) hoặc \(x=-1\)
b, \(x\left(x-3\right)+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
Vậy \(x=3\) hoặc \(x=-2\)
1/ a, \(A=\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
\(=\dfrac{3}{2\left(x+3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)
\(=\dfrac{3x-x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2x+6}{2x\left(x+3\right)}\)
\(=\dfrac{2\left(x+3\right)}{2x\left(x+3\right)}\)
\(=\dfrac{1}{x}\)
Vậy \(A=x\)
b/ Khi \(x=\dfrac{1}{2}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{2}}=2\)
Vậy...
2/a,
\(A=\dfrac{5x+2}{3x^2+2x}+\dfrac{-2}{3x+2}\)
\(=\dfrac{5x+2}{x\left(3x+2\right)}-\dfrac{2x}{x\left(3x+2\right)}\)
\(=\dfrac{5x+2-2x}{x\left(3x+2\right)}\)
\(=\dfrac{3x+2}{x\left(3x+2\right)}\)
\(=\dfrac{1}{x}\)
Vậy....
b/ Với \(x=\dfrac{1}{3}\Leftrightarrow A=\dfrac{1}{\dfrac{1}{3}}=3\)
Vậy..
Bài 1:
a) \(\dfrac{15xy}{10x^2y}\)
= \(\dfrac{3.5xy}{2.5xyx}\)
= \(\dfrac{3}{2x}\)
d) \(\dfrac{6x\left(x+5\right)^3}{2x^2\left(x+5\right)}\)
= \(\dfrac{3.2x\left(x+5\right)\left(x+5\right)^2}{x.2x\left(x+5\right)}\)
= \(\dfrac{3\left(x+5\right)^2}{x}\)
d. ĐKXĐ: x khác 1, x khác 3
\(\dfrac{x+5}{x-1}=\dfrac{x+1}{\left(x-3\right)}-\dfrac{8}{x^2-4x+3}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+5\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\) \(\Leftrightarrow x^2+2x-15=x^2-1-8\)
\(\Leftrightarrow2x-15+1+8=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\) (loại)
Vậy pt vô nghiệm
1) \(8x^3+12x^2+6x+1=\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3\)
\(=\left(2x+1\right)^3=\left(2.-2+1\right)^3=-27\)
2) \(8x^3-12x+6x-1=\left(2x\right)^3-3.\left(2x\right)^2.1+3.2x.1^2-1^3\)
\(=\left(2x-1\right)^3=\left(2.-\frac{1}{2}-1\right)^3=-8\)
3)\(\left(1-2x\right)^2-\left(3x+1\right)^2=\left(1-2x+3x+1\right)\left(1-2x-3x-1\right)\)
\(=\left(x+2\right)\left(-5x\right)=\left(-2+2\right).\left(-5.-2\right)=0\)
4) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=\left(2x-3y\right)\left[\left(2x\right)^2+2x.3y+\left(3y\right)^2\right]\)
\(=\left(2x\right)^3-\left(3y\right)^3=\left(2.-\frac{1}{2}\right)^3-\left(3.-\frac{1}{3}\right)^3=-1-\left(-1\right)=0\)
b: \(=\dfrac{-1}{x\left(5x-1\right)}-\dfrac{25x-15}{\left(5x-1\right)\left(5x+1\right)}\)
\(=\dfrac{-5x-1-25x^2+15x}{x\left(5x-1\right)\left(5x+1\right)}\)
\(=\dfrac{-25x^2-10x-1}{x\left(5x-1\right)\left(5x+1\right)}=\dfrac{-\left(5x+1\right)}{x\left(5x-1\right)}\)
c: \(=\dfrac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\dfrac{3y}{x\left(x-3y\right)}\)
\(=\dfrac{x^2+9xy-3xy-9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)
\(=\dfrac{x^2+6xy-9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)
d: \(=\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{1}{x+1}+\dfrac{x+3}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{3x^2+4x+1-x^2+2x-1+x^2+2x-3}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(=\dfrac{3x^2+8x-3}{\left(x-1\right)^2\cdot\left(x+1\right)}=\dfrac{3x^2+9x-x-3}{\left(x-1\right)^2\cdot\left(x+1\right)}\)
\(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}\)
Câu trả lời sai là:
(C) Giá trị của Q tại \(x=3\) là \(\dfrac{3-3}{3+3}=0\)
Do ĐKXĐ của phương trình
\(Q=\dfrac{x^2-6x+9}{x^2-9}\) là \(x\ne\pm3\)
Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)
\(\frac{4.\left(x+3\right)}{3x-1}:\frac{x^2+3x}{3x-1}=\frac{4.\left(x+3\right)}{\left(3x-1\right)}\cdot\frac{\left(3x-1\right)}{x^2+3x}=\frac{4.\left(x+3\right)}{x.\left(x+3\right)}=\frac{4}{x}\)
\(a,\frac{x+2}{x-1}-\frac{x-9}{1-x}-\frac{x-9}{1-x}\)
\(=\frac{-x-2}{1-x}-\frac{x-9}{1-x}-\frac{x-9}{1-x}\)
\(=\frac{-x-2}{1-x}+\frac{-\left(x-9\right)}{1-x}+\frac{-\left(x-9\right)}{1-x}\)
\(=\frac{-x-2-x+9-x+9}{1-x}=\frac{-3x+16}{1-x}\)
Câu b,c mk chưa học, bn thông cảm
Còn câu a, nếu sai thì xin lượng thứ :))
a) Ta có: \(\dfrac{3x^2-12x+12}{x^2-4}\)
\(=\dfrac{3\left(x^2-4x+4\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{3\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{3\left(x-2\right)}{x+2}\)
\(=\dfrac{3\cdot\left(\dfrac{-1}{4}-2\right)}{\dfrac{-1}{4}+2}=-\dfrac{27}{7}\)
b) Ta có: \(\dfrac{x^2-5x-6}{x^2-9}\)
\(=\dfrac{\left(x-6\right)\left(x+1\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{\left(-1-6\right)\left(-1+1\right)}{\left(-1-3\right)\left(-1+3\right)}\)
=0