K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

Sửa đề:

\(\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)+\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}\)

\(=\frac{\left(a^2+b^2+c^2+ab+bc+ca\right)\left(a+b+c\right)}{a^2+b^2+c^2+2ab+2bc+2ca-\left(ab+bc+ca\right)}\)

\(=\frac{\left(a^2+b^2+c^2+ab+bc+ca\right)\left(a+b+c\right)}{a^2+b^2+c^2+ab+bc+ca}\)

\(=a+b+c\left(a^2+b^2+c^2+ab+bc+ca\ne0\right)\)

9 tháng 12 2018

cảm ơn anh để em xem lại 

3 tháng 12 2016

Cho phân thức \(A=\frac{x^5+2x^4+2x^3-4x^2+3x+6}{x^2+2x-8}\)

a) Tìm tập  xác định của A

b) Tìm các giá trị của x để A = 0

c) Rút gọn A

5 tháng 12 2018

giải giúp

NV
21 tháng 1

Phân thức có nghĩa khi a;b;c không đồng thời bằng 0

Khi đó:

\(\dfrac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\left(ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

\(=\dfrac{\left(a^2+b^2+c^2\right)^2+2\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)+\left(ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

\(=\dfrac{\left(a^2+b^2+c^2+ab+bc+ca\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)

\(=a^2+b^2+c^2+ab+bc+ca\)

24 tháng 6 2017

đây là một hằng đẳng thức nha bạn

=a3+b3+c3-3abc

24 tháng 6 2017

thank

25 tháng 11 2019

\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc-c^2\right)-3ab\left(a+b+c\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc-c^2-3ab\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)

\(=a+b+c\)

21 tháng 10 2016

- Phân tích ra nhân tử :

\(a^3+b^3+c^3-3abc=a^3+b^3+c^3+3a^2b-3ab^2+3ab^2-3ab^2-3abc\)\(=a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Từ đây ta có \(A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(\Rightarrow A=a+b+c\)