Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^{10}-x^8-x^7+x^6+x^6+x^4-x^3-x^2+1}{x^{30}+x^{24}+x^{18}+x^{12}+x^6+1}=\frac{(x^{10}-x^8+x^6)-(x^7-x^5+x^3)+(x^4-x^2+1)}{ (x^{30}+x^{18}+x^{24})+(x^{12}+x^6+1)} \)
=\(\frac{(x^4-x^2+1)(x^6-x^3+1)}{(x^{12}+x^6+1)(x^{18}+1 )}=\frac{(x^4-x^2+1)(x^6-x^3+1)}{(x^{12}+2x^6+1-x^6) (x^6+1)(x^{12}-x^6+1)}=\frac{(x^4-x^2+1)(x^6-x^3+1)}{ (x^6-x^3+1)(x^6+x^3+1)(x^2+1)(x^4-x^2+1)(x^12-x^6+1 )} \)
=\(\frac{1}{(x^6+x^2+1)(x^2+1)(x^{12}-x^6+1)}\)
Mk làm luôn nhé , không chép lại đề đâu
Q = \(\dfrac{x^6\left(x^4-x^2+1\right)-x^3\left(x^4-x^2+1\right)+x^4-x^2+1}{x^{18}\left(x^{12}+x^6+1\right)+x^{12}+x^6+1}\)
\(Q=\dfrac{\left(x^4-x^2+1\right)\left(x^6-x^3+1\right)}{\left(x^{12}+x^6+1\right)\left(x^{18}+1\right)}\)
\(Q=\dfrac{\left(x^4-x^2+1\right)\left(x^6-x^3+1\right)}{\left(x^{12}+x^6+1\right)\left[\left(x^6\right)^3+1\right]}\)
\(Q=\dfrac{\left(x^4-x^2+1\right)\left(x^6-x^3+1\right)}{\left(x^{12}+2x^6+1-x^6\right)\left[\left(x^2\right)^3+1\right]\left(x^{12}-x^6+1\right)}\)
\(Q=\dfrac{\left(x^4-x^2+1\right)\left(x^6-x^3+1\right)}{\left[\left(x^6+1\right)-\left(x^3\right)^2\right]\left(x^2+1\right)\left(x^4-x^2+1\right)\left(x^{12}-x^6+1\right)}\)
\(Q=\dfrac{\left(x^6-x^3+1\right)}{\left(x^6-x^3+1\right)\left(x^6+1+x^3\right)\left(x^2+1\right)\left(x^{12}-x^6+1\right)}\)
\(Q=\dfrac{1}{\left(x^6+1+x^3\right)\left(x^2+1\right)\left(x^{12}-x^6+1\right)}\)
\(\frac{x^{24}+x^{18}+x^{12}+x^6+1}{x^{27}+x^{24}+x^{21}+x^{18}+x^{15}+x^{12}+x^9+x^6+x^3+1}=\frac{x^{24}+x^{18}+x^{12}+x^6+1}{x^{24}\left(x^3+1\right)+x^{18}\left(x^3+1\right)+x^{12}\left(x^3+1\right)+x^6\left(x^3+1\right)+\left(x^3+1\right)}\)
=\(\frac{x^{24}+x^{18}+x^{12}+x^6+1}{\left(x^3+1\right)\left(x^{24}+x^{18}+x^{12}+x^6+1\right)}=\frac{1}{x^3+1}\)
a,\(A=\frac{6x+12}{\left(x+2\right)\left(2x-6\right)}=\frac{6\left(x+2\right)}{2\left(x+2\right)\left(x-3\right)}=\frac{3}{x-3}\)
b, Giá trị của x để phân thức có giá trị bằng (-2) :
\(\frac{3}{x-3}=-2\Rightarrow x=1,5\)
\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\left(DK:x\ne-1;x\ne1\right)\)
\(=\frac{x^4\left(x^3+x^2+x+1\right)+\left(x^3+x^2+x+1\right)}{x^2-1}\)
\(=\frac{x^4\left[x\left(x^2+1\right)+x^2+1\right]+\left[x\left(x^2+1\right)+x^2+1\right]}{x^2-1}\)
\(=\frac{\left(x^4+1\right)\left(x+1\right)\left(x^2+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{\left(x^2+1\right)\left(x^4+1\right)}{x-1}\)
\(\frac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\)
\(=\frac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^6+x^4+x^2\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x^6+x^4+x^2}{x+1}\)
\(=\frac{x^2\left(x^3+x^2+1\right)}{x+1}\)