\(\left(x+y-\frac{4xy}{x+y}\right):\left(\frac{x}{x+y}-\frac{y}{y-x}-\frac{2xy}{x^2-y^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

(\(\frac{\left(x+y\right)^2}{x+y}\) -\(\frac{4xy}{x+y}\) ):\(\frac{\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}\)

\(\frac{\left(x-y\right)^2}{x+y}\).\(\frac{x+y}{x-y}\) =x-y

29 tháng 5 2015

ĐKXĐ: x2-y2\(\ne\)0                                                      4xy\(\ne\)0

     \(\Leftrightarrow\)\(\left(x-y\right)\left(x+y\right)\ne0\)                            <=>x\(\ne\)0 và y \(\ne\)0

     \(\Leftrightarrow x\ne y\) và \(x\ne-y\)

Đặt P= \(\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)

<=>\(\left(\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x+y\right)\left(x-y\right)}\right).\frac{y^2-x^2}{4xy}\)

<=>\(\left(\frac{x-y}{\left(x+y\right)^2\left(x-y\right)}-\frac{x+y}{\left(x+y\right)^2\left(x-y\right)}\right).\frac{-\left(x^2-y^2\right)}{4xy}\)

<=>\(\frac{x-y-x-y}{\left(x+y\right)^2\left(x-y\right)}.\frac{-\left(x-y\right)\left(x+y\right)}{4xy}=\frac{-2y}{\left(x+y\right)^2\left(x-y\right)}.\frac{-\left(x-y\right)\left(x+y\right)}{4xy}\)

<=>\(\frac{1}{2x\left(x+y\right)}=\frac{1}{2x^2+2xy}\)

4 tháng 1 2019

a) ĐKXĐ: \(x\ne\pm1\)

\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{1-x}{\left(1+x\right)\left(1-x\right)}-\frac{x\left(1+x\right)}{\left(1-x\right)\left(1+x\right)}+\frac{x}{x^2-1}\right)\)

\(=\frac{4x-1}{x^2-1}:\left(\frac{-x^2-2x+1}{1-x^2}-\frac{x}{1-x^2}\right)=\frac{4x-1}{x^2-1}:\frac{-x^2-3x+1}{1-x^2}\)

\(=\frac{1-4x}{1-x^2}:\frac{-x^2-3x+1}{1-x^2}=\frac{\left(1-4x\right)\left(1-x^2\right)}{\left(1-x^2\right)\left(-x^2-3x+1\right)}\)

\(=\frac{1-4x}{-x^2-3x+1}=\frac{4x-1}{x^2+3x-1}\) (chắc hết rút gọn được rồi)

4 tháng 1 2019

Ơ sao câu trả lời của mình có khung màu vàng nhỉ?

8 tháng 5 2018

Ta có: \(A=\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)

\(=\left[\frac{1}{\left(x+y\right)^2}-\frac{1}{\left(x+y\right)\left(x-y\right)}\right].\frac{\left(y+x\right)\left(y-x\right)}{4xy}\)

\(=\frac{1}{x+y}\left(\frac{1}{x+y}-\frac{1}{x-y}\right).\frac{\left(x+y\right)\left(y-x\right)}{4xy}\)

\(=\frac{-2y}{\left(x+y\right)\left(x-y\right)}.\frac{x-y}{-4xy}\)

\(=\frac{1}{\left(x+y\right).2x}\)

Kb với mình nha mn!

2 tháng 1 2019

\(x+y+z=0\)

\(\Rightarrow\left(x+y+z\right)^2=0\)

\(x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(x^2+y^2+z^2=-2\left(xy+yz+zx\right)\)

\(\frac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)

\(=\frac{-2\left(xy+yz+zx\right)}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)}\)

\(=\frac{-2\left(xy+yz+zx\right)}{2\left[-2\left(xy+yz+zx\right)\right]-2\left(xy+yz+xz\right)}\)

\(=\frac{-2\left(xy+yz+zx\right)}{-4\left(xy+yz+zx\right)-2\left(xy+yz+xz\right)}\)

\(=\frac{-2\left(xy+yz+zx\right)}{-6\left(xy+yz+zx\right)}\)

\(=\frac{1}{3}\)

2 tháng 1 2019

Ta có: \(x+y+z=0\)

\(\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\)

\(x^2+2xy+y^2=z^2\)

\(x^2+y^2-z^2=-2xy\)

\(\frac{2x^2y+2xy^2}{x^2+y^2-z^2}\)

\(=\frac{2xy\left(x+y\right)}{-2xy}\)

\(=\frac{-2xyz}{-2xy}\)

\(=z\)

13 tháng 2 2020

\(A=\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(y+z\right)\left(y+x\right)}+\frac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)

\(=\frac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-xz\right)\left(z+x\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{x^2y+x^2z-y^2z-yz^2+y^2z+y^2x-xz^2-x^2z+z^2x+z^2y-x^2y-xy^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)

Vậy : \(A=0\)

13 tháng 2 2020

\(\frac{(x^2-yz)(y+z)}{(x+y)(x+z)(y+z)}\) = ​​\(\frac{(y^2-xz)(x+z)}{(x+y)(x+z)(y+z)}\)​= \(\frac{(z^2-xy)(x+y)}{(x+y)(x+z)(y+z)}\)