Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(=\frac{4y^2-\left(x-y\right)^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{x\left(x-2y\right)-2\left(x^2-xy\right)}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)
\(=\frac{3y^2+2xy-x^2}{y^2\left(x-y\right)}.\frac{y^2-xy}{x-3y}+\frac{-x^2}{2\left(x-2y\right)}.\frac{2x-4y}{xy+y^2}\)
\(=\frac{\left(x+y\right)\left(3y-x\right)}{y^2\left(x-y\right)}.\frac{y\left(y-x\right)}{x-3y}-\frac{x^2}{2\left(x-2y\right)}.\frac{2\left(x-2y\right)}{y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)}{y}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}=\frac{2xy+y^2}{y\left(x+y\right)}=\frac{2x+y}{x+y}\)
Giờ chỉ cần thế x, y vô nữa là xong nhé.
\(A=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y^2-xy}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x^2-xy}{x-2y}\right):\frac{xy+y^2}{2x-4y}\)
\(=\left(\frac{4}{x-y}-\frac{x-y}{y^2}\right).\frac{y\left(y-x\right)}{x-3y}\)\(+\left(\frac{x}{2}-\frac{x\left(x-y\right)}{x-2y}\right):\frac{y\left(x+y\right)}{2\left(x-2y\right)}\)
\(=\frac{4y\left(y-x\right)}{\left(x-y\right)\left(x-3y\right)}-\frac{\left(x-y\right)y\left(y-x\right)}{y^2\left(x-3y\right)}\)\(+\frac{x.2\left(x-2y\right)}{2.y\left(x+y\right)}-\frac{x\left(x-y\right).2\left(x-2y\right)}{\left(x-2y\right).y\left(x+y\right)}\)
\(=\frac{-4y}{x-3y}+\frac{\left(x-y\right)^2}{y\left(x-3y\right)}+\frac{x\left(x-2y\right)}{y\left(x+y\right)}-\frac{2x\left(x-y\right)}{y\left(x+y\right)}\)
\(=\frac{-4y^2+x^2-2xy+y^2}{y\left(x-3y\right)}+\frac{x^2-2xy-2x^2+2xy}{y\left(x+y\right)}\)
\(=\frac{x^2-2xy-3y^2}{y\left(x-3y\right)}+\frac{-x^2}{y\left(x+y\right)}\)
\(=\frac{x^2+xy-3xy-3y^2}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{x\left(x+y\right)-3y\left(x+y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(\frac{\left(x+y\right)\left(x-3y\right)}{y\left(x-3y\right)}-\frac{x^2}{y\left(x+y\right)}\)
\(=\frac{x+y}{y}-\frac{x^2}{y\left(x+y\right)}=\frac{\left(x+y\right)^2-x^2}{y\left(x+y\right)}\)
\(=\frac{x^2-2xy+y^2-x^2}{y\left(x+y\right)}=\frac{-2xy+y^2}{y\left(x+y\right)}\)
\(=\frac{y\left(y-2x\right)}{y\left(x+y\right)}=\frac{y-2x}{x+y}\)
Thay \(x=\frac{1}{2};y=\frac{1}{3}\)vào A ta có :
\(A=\frac{\frac{1}{3}-2.\frac{1}{2}}{\frac{1}{2}+\frac{1}{3}}=\frac{\frac{1}{3}-1}{\frac{3}{6}+\frac{2}{6}}=\frac{2}{3}:\frac{5}{6}=\frac{2.6}{3.5}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)tại \(x=\frac{1}{2};y=\frac{1}{3}\)
a) ĐKXĐ: \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{1-x}{\left(1+x\right)\left(1-x\right)}-\frac{x\left(1+x\right)}{\left(1-x\right)\left(1+x\right)}+\frac{x}{x^2-1}\right)\)
\(=\frac{4x-1}{x^2-1}:\left(\frac{-x^2-2x+1}{1-x^2}-\frac{x}{1-x^2}\right)=\frac{4x-1}{x^2-1}:\frac{-x^2-3x+1}{1-x^2}\)
\(=\frac{1-4x}{1-x^2}:\frac{-x^2-3x+1}{1-x^2}=\frac{\left(1-4x\right)\left(1-x^2\right)}{\left(1-x^2\right)\left(-x^2-3x+1\right)}\)
\(=\frac{1-4x}{-x^2-3x+1}=\frac{4x-1}{x^2+3x-1}\) (chắc hết rút gọn được rồi)
a)\(M=\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\left(ĐKXĐ:x\ne-1;y\ne1\right)\)
\(M=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x^2+x^3-y^2+y^3-x^3y^2-x^2y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(x-y\right)\left(x+y\right)-x^2y^2\left(x+y\right)+x^3+y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(x-y\right)\left(x+y\right)-x^2y^2\left(x+y\right)+\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(x+y\right)\left(x-y-x^2y^2+x^2-xy+y^2\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x-y-x^2y^2+x^2-xy+y^2}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x-xy+x^2-x^2y^2+y^2-y}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x\left(1-y\right)+x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(1-y\right)\left(x+x^2\left(1+y\right)-y\right)}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x\left(x+1\right)+y\left(x-1\right)\left(x+1\right)}{1+x}\)
\(M=x+xy-y\)
b)Ta có:\(x+xy-y=-7\)
\(x\left(y+1\right)-y-1+8=0\)
\(\left(x-1\right)\left(y+1\right)=-8\)
Ta có : -8 = 8 . -1 = -8 . 1 = -2.4=-4.2
Rồi chỗ đó tự thay nha
Đây là bài dài nhất trong olm của mk