Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(cos14^o=sin76^o;cos87^o=sin3^o\). Vì \(3^o< 47^o< 76^o< 78^o\) nên \(sin3^o< sin47^o< sin76^o< sin78^o\). Vậy ta có thứ tự xếp sau: \(cos87^o< sin47^o< cos14^o< sin78^o\)
a) \(A=sin42^0+tan45^0-cos48^0=sin42^0+1-sin42^0=1\)
Bài b bạn coi thử có nhầm lẫn chỗ nào không
\(a,A=\sin^234^0+\cos^234^0+\dfrac{\cot42^0}{\cot42^0}=1+1=2\\ b,B=\left(\cos^213^0+\sin^277^0\right)+\dfrac{3\cot64^0}{\cot64^0}+2\cot32^0\cdot\tan32^0\\ B=1+3+2\cdot1=6\\ c,B=\dfrac{5\cot35^0}{\cot35^0}-2\left(\sin^261^0-\cos^261^0\right)=5-2\cdot1=3\)
=3tan67-3tan67+5[cos^2(16 độ)+cos^2(74 độ)]-1
=5-1
=4
`sin^2 25^o + sin^2 65^o`
`=cos^2 65^o + sin^2 65^o`
=1`
__________________________________________
`***` Áp dụng công thức lượng giác: `sin^2 \alpha +cos^2 \alpha =1`
Ta có \(\sin x=\cos\left(90^0-x\right)\)
\(\Rightarrow M=\left(\sin^242^0+\sin^248^0\right)+\left(\sin^243^0+\sin^247^0\right)+\left(\sin^244^0+\sin^246^0\right)+\sin^245^0\)
\(=\left(\sin^242^0+\cos^242^0\right)+\left(\sin^243^0+\cos^243^0\right)+\left(\sin^244^0+\cos^244^0\right)+\sin^245^0\)
\(=1+1+1+\left(\frac{\sqrt{2}}{2}\right)^2=3+\frac{1}{2}=\frac{7}{2}\)