
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{1}{2}.C=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\)
\(C-\frac{1}{2}.C=\left[\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{99}\right]-\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\right]\)
\(\frac{1}{2}.C=\frac{1}{2}-\left(\frac{1}{2}\right)^{100}=\frac{1}{2}-\frac{1}{2^{100}}\)
\(C=\left(\frac{1}{2}-\frac{1}{2^{100}}\right):\frac{1}{2}\)
\(C=\left(\frac{1}{2}-\frac{1}{2^{100}}\right).2=1-\frac{1}{2^{99}}\)

Cũng khuya rồi , mình làm câu 1 thôi nhé !
\(\frac{2.5^{22}-9.5^{21}}{25^{10}}=\frac{2.5^{22}-9.5^{21}}{\left(5^2\right)^{10}}\)
\(\frac{5^{21}.\left(2.5-9\right)}{5^{20}}=5.\left(10-9\right)=5\)

Xet \(M-1=a+\frac{2a+2}{2-b}-\left(\frac{2a-b}{2+b}+1\right)+\frac{4a}{b^2-4}\)
=\(a+\left(2a+2\right)\left(\frac{1}{2-b}-\frac{1}{2+b}\right)+\frac{4a}{b^2-4}\)
=\(\frac{ab^2-4a-4ab-4b+4a}{b^2-4}\)
=\(\frac{ab^2-4ab-4b}{b^2-4}\)
den doan nay em xet rieng tu so \(ab^2-4ab-4b\)
thay b=a/a+1 vao \(\frac{a^3}{\left(a+1\right)^2}-\frac{4a^2}{a+1}-\frac{4}{a+1}\)
=\(\frac{a\left(a+2\right)\left(-3a-2\right)}{\left(a+1\right)^2}\)
xet mau so b^2-4=(a/a+1)^-4
=\(\frac{\left(a+2\right)\left(-3a-2\right)}{\left(a+1\right)^2}\)
den day thay vao la xong nha

a) \(3^2.\frac{1}{243}.81^2.\frac{1}{3^2}=\frac{1.81^2}{243}.\frac{3^2}{3^2}=\frac{6561}{243}.1=27\)
b, \(4^6.256^2.2^4=2^{12}.2^{16}.2^4=2^{32}\)
c) \(A=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}\)(Mình rút gọn lun cho nhanh nhé ) \(\Rightarrow A=\frac{4}{5}\)
d) \(\Rightarrow B=70\)k cho mình nha Cô Nàng Họ Dương
Đây nhé : ý a,b mình đã giải thích rồi
c) \(=\frac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}=\frac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.\left(2.3-1\right)}=\frac{2.6}{3.5}=\frac{12}{15}=\frac{4}{5}\)\(\frac{4}{5}\)
d) \(=\frac{2^4.5^4+2^5.5^3}{2^3.5^2}=\frac{2^4.5^3.\left(5+2\right)}{2^3.5^2}=2.5.7=70\)

\(đat:\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(a,\frac{a^2-b^2}{ab}=\frac{b^2k^2-b^2}{bkb}=\frac{b^2\left(k^2-1\right)}{b^2k}=\frac{k^2-1}{k};\frac{c^2-d^2}{cd}=\frac{d^2\left(k^2-1\right)}{d^2k}=\frac{k^2-1}{k}\Rightarrow\frac{a^2-b^2}{ab}=\frac{c^2-d^2}{cd}\) \(b,\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left[b\left(k+1\right)\right]^2}{b^2k^2+b^2}=\frac{b^2\left(k+1\right)^2}{b^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{\left(k^2+1\right)};\frac{\left(c+d\right)^2}{c^2+d^2}=\frac{\left[d\left(k+1\right)\right]^2}{d^2k^2+d^2}=\frac{d^2\left(k+1\right)^2}{d^2\left(k^2+1\right)}=\frac{\left(k+1\right)^2}{k^2+1}\Rightarrow\frac{\left(a+b\right)^2}{a^2+b^2}=\frac{\left(c+d\right)^2}{c^2+d^2}\) \(c,\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1};\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
\(\frac{48c^2+27b^2+36c^2}{a^2+b^2+c^2}=\frac{14\cdot3c^2+9\cdot3b^2+12\cdot3a^2}{a^2+b^2+c^2}=\frac{3\left(14c^2+9b^2+12a^2\right)}{a^2+b^2+c^2}\)