\(\dfrac{x^4+4}{x.\left(x^2+2\right)-2x^2-\left(x-1\right)^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Rút gọn phân thức

27 tháng 4 2017

a)\(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)

=\(2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)

b) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24=-11x+24\)

c) \(\dfrac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+4\right)\)

\(=3x^3-\dfrac{3}{2}x^2-x^3-\dfrac{1}{2}x+\dfrac{1}{2}x+2=2x^3-\dfrac{3}{2}x^2+2\)

12 tháng 7 2017

\(a,\dfrac{x^2-2x}{x^2-4}=\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)

b) \(\dfrac{x^2+5x+4}{x^2-1}=\dfrac{x^2+x+4x+4}{x^2-1}=\dfrac{\left(x+1\right)\left(x+4\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+4}{x-1}\)

c) \(\dfrac{x^4+4}{x\left(x^2+2\right)-2x^2-\left(x-1\right)^2-1}\)

\(=\dfrac{x^4+4x^2-4x^2+4}{x^3+2x-2x^2-x^2+2x-1-1}\)

\(=\dfrac{\left(x^2+2\right)^2-4x^2}{\left(x^3+2x-2x^2\right)-\left(x^2-2x+2\right)}\)

\(=\dfrac{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}{x\left(x^2+2-2x\right)-\left(x^2+2-2x\right)}\)

\(=\dfrac{x^2+2+2x}{x-1}\)

Bài 2:

a) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)

\(=\dfrac{\left(2x+1\right)^2-\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}.\dfrac{5\left(2x-1\right)}{4x}\)

\(=\dfrac{8x}{\left(2x-1\right)\left(2x+1\right)}.\dfrac{5\left(2x-1\right)}{4x}\)

\(=\dfrac{10}{2x+1}\)

b) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)

\(=\dfrac{1-2x+x^2}{x\left(x+1\right)}:\dfrac{1+x^2-2x}{x}\)

\(=\dfrac{1}{x+1}\)

c) Trong ngoặc giữa hai phân số là dấu gì vậy ?

14 tháng 7 2017

là dấu cộng

28 tháng 6 2017

Rút gọn phân thức

Rút gọn phân thức

3 tháng 7 2018

đề bài kêu làm gì

18 tháng 8 2017

1) \(\dfrac{x^{4^{ }}-y^4}{y^3-x^3}=\dfrac{\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)}{-\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{x^3+x^2y+xy^2+y^3}{-x^2-xy-y^2}\)

2) \(\dfrac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(3x^2-27\right)}=\dfrac{2x^2-6x-4x+12}{\left(x-2\right)\left(3x^2-27\right)}\\ =\dfrac{2x\left(x-2\right)-6\left(x-2\right)}{\left(x-2\right)\left(3x^2-27\right)}\\ =\dfrac{2x-6}{3x^2-27}\\ =\dfrac{2\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}\\ =\dfrac{2}{3x+9}\)

3)

\(\dfrac{2x^3+x^2-2x-1}{x^3+2x^2-x-2}=\dfrac{2x\left(x^2-1\right)+\left(x^2-1\right)}{x\left(x^2-1\right)+2\left(x^2-1\right)}\\ =\dfrac{2x+1}{x+2}\)

\(3x^4-4x^3+2x\left(x^3-2x^2+7x\right)\)

\(=3x^4-4x^3+2x^4-4x^3+14x^2\)

\(=5x^4-8x^3+14x^2\)

3x4 - 4x3 + 2x(x3 - 2x2 + 7x )

= 3x4 - 4x3 + 2x4 _ 4x3 + 14x2

= 5x4 - 8x3 + 14x2

16 tháng 11 2018

\(A=\frac{\left(x^2+2x\right).\left(x-2\right)^2}{\left(x^3-4x\right).\left(x+1\right)}\)

\(A=\frac{\left(x^2+2x\right).\left(x^2-4x+4\right)}{\left(x^3-4x\right).\left(x+1\right)}=\frac{x^4-4x^3+4x^2+2x^3-8x^2+8x}{x^4+x^3-4x^2-4x}\)

\(A=\frac{x^4-2x^3-4x^2+8x}{x^4+x^3-4x^2-4x}=\frac{x^3.\left(x-2\right)-4x.\left(x-2\right)}{x^3.\left(x+1\right)-4x.\left(x+1\right)}=\frac{\left(x^3-4x\right).\left(x-2\right)}{\left(x^3-4x\right).\left(x+1\right)}=\frac{x-2}{x+1}\)

thay \(x=\frac{1}{2}\Rightarrow A=\frac{\frac{1}{2}-2}{\frac{1}{2}+1}=\frac{-\frac{3}{2}}{\frac{3}{2}}=-1\)

Vậy A=-1 

17 tháng 6 2018

a/ \(\left(x+3\right)^2-\left(x-2\right)\left(x+2\right)\)

\(\left(x+3\right)^2-\left(x^2-4\right)\)

\(\left(x+3\right)^2-x^2+4\)

\(\left(x+3-2\right)\left(x+3+2\right)+4\)

\(4+\left(x+1\right)\left(x+5\right)\)

b/ \(\left(3x-4\right)^2-\left(x-4\right)\left(x+4\right)-8x^2\)

\(\left(3x-4\right)^2-\left(x^2-16\right)-8x^2\)

\(\left(3x-4\right)^2-x^2+16-8x^2\)

\(\left(3x-4\right)^2-9x^2+16\)

\(\left(3x-4-3x\right)\left(3x-4+3x\right)+16\)

\(-4\left(6x-4\right)+16\)

\(4\left(4-6x\right)+16\)

\(4\left(4-6x+1\right)\)

\(4\left(5-6x\right)\)

c/ \(\left(x-2\right)\left(x+2\right)+\left(x-3\right)\left(x+3\right)-x\left(2x+1\right)-4\)

\(x^2-4+x^2-9-2x^2-x-4\)

\(-17-x\)

\(-\left(17+x\right)\)