Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\frac{2}{3}-\frac{1}{4}+\frac{5}{11}}{\frac{5}{12}+1-\frac{7}{11}}=\frac{\frac{115}{132}}{\frac{103}{132}}=\frac{115}{132}\cdot\frac{132}{103}=\frac{115}{103}\)
2: \(=\dfrac{0.8}{\dfrac{16}{25}-\dfrac{1}{25}}+\dfrac{\dfrac{71}{75}\cdot\dfrac{7}{4}}{\dfrac{119}{36}\cdot\dfrac{36}{17}}\)
\(=\dfrac{4}{5}\cdot\dfrac{5}{3}+\dfrac{71}{300}=\dfrac{471}{300}=\dfrac{157}{100}\)
3: \(=\dfrac{\dfrac{2}{5}-\dfrac{2}{9}+\dfrac{2}{11}}{\dfrac{7}{5}-\dfrac{7}{9}+\dfrac{7}{11}}-\dfrac{\dfrac{2}{6}-\dfrac{2}{8}+\dfrac{2}{10}}{\dfrac{7}{6}-\dfrac{7}{8}+\dfrac{7}{10}}\)
=2/7-2/7=0
1, =\(\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}=\frac{1}{2}\)
2, A=\(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)
= \(\frac{1\cdot2\cdot3\cdot....\cdot99}{2\cdot3\cdot4\cdot...\cdot100}=\frac{1}{100}\)
Vậy ......
hok tốt
\(A=\frac{2015+2013+2011+...+5+3+1}{2015-2013+2011-2009+...+7-5+3-1}\)
Ta có : 2015 + 2013 + 2011 + ... + 5 + 3 + 1
= [(2015 - 1) : 2 + 1].(2015 + 1) : 2
= 1008.2016 : 2 = 1016064
Lại có : 2015 - 2013 + 2011 - 2009 + ... + 7 - 5 + 3 - 1 (1008 số hạng
= (2015 - 2013) + (2011 - 2009) + ... + (7 - 5) + (3 - 1) (504 cặp)
= 2 + 2 + ... + 2 + 2 (504 số hạng 2)
= 2 x 504 = 1008
Khi đó A = \(\frac{1016064}{1008}=1008\)
b) tTa có : B = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{97.3}+\frac{1}{99.1}}\)
=> \(\frac{B}{100}\) = \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{100}{1.99}+\frac{100}{3.97}+\frac{100}{5.95}+...+\frac{100}{97.3}+\frac{100}{99.1}}\)
\(=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{1+\frac{1}{99}+\frac{1}{3}+\frac{1}{97}+\frac{1}{5}+\frac{1}{95}+..+\frac{1}{97}+\frac{1}{3}+\frac{1}{99}+1}=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{2\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}=\frac{1}{2}\)
Khi đó : B/100 = 1/2
=> B = 50
Vậy B = 50
Ta có: \(A=\frac{1}{3}.\frac{1}{7}+\frac{1}{7}.\frac{1}{11}+\frac{1}{11}.\frac{1}{15}+...+\frac{1}{95}.\frac{1}{99}\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{95}-\frac{1}{99}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=\frac{1}{4}.\frac{32}{99}=\frac{8}{99}\)
\(4A=\frac{4}{3.7}+...+\frac{4}{95.99}\)
\(4A=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\)
\(4A=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\Rightarrow A=\frac{8}{99}\)
\(A=\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{95.99}\)
\(A=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{95.99}\right)\)
\(A=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{99}\right)\)
\(A=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(A=\frac{1}{4}.\frac{32}{99}\)
\(A=\frac{8}{99}\)
\(\Rightarrow A=\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{1+\frac{1}{6}-\frac{7}{8}+\frac{7}{10}}\right):\frac{2014}{2015}\)
\(\Rightarrow A=\left(\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{\frac{17}{60}}{\frac{119}{120}}\right):\frac{2014}{2015}\)
\(\Rightarrow A=\left(\frac{2}{7}-\frac{2}{7}\right):\frac{2014}{2015}\)
\(\Rightarrow A=0:\frac{2014}{2015}\Rightarrow A=0\)
rút gọn chứ ko fai tính à
\(C=\frac{1}{3}.\frac{1}{7}+\frac{1}{7}.\frac{1}{11}+\frac{1}{11}.\frac{1}{13}+...+\frac{1}{2011}.\frac{1}{2015}\)
\(C=\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.13}+...+\frac{1}{2011.2015}\)
\(4C=4\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.13}+...+\frac{1}{2011.2015}\right)\)
\(4C=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.13}+...+\frac{4}{2011.2015}\)
\(4C=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+...+\frac{1}{2011}-\frac{1}{2015}\)
\(4C=\frac{1}{3}-\frac{1}{2015}=\frac{2012}{6045}\)
\(C=\frac{2012}{6045}:4=\frac{503}{6045}\)