Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{8-2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}=\left|\sqrt{7}-1\right|=\sqrt{7}-1\)
\(\sqrt{29-12\sqrt{5}}-\sqrt{9-4\sqrt{5}}=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=\left|2\sqrt{5}-3\right|-\left|\sqrt{5}-2\right|=2\sqrt{5}-3-\sqrt{5}+2=\sqrt{5}-1\)
b)\(=\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}-1\)
c)\(=\sqrt{\left(2\sqrt{5}-3\right)^2}-\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=2\sqrt{5}-3-\sqrt{5}+2\)
\(=\sqrt{5}-1\)
a) Ta có: \(A^3=\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)^3\)
\(=2+\sqrt{5}+2-\sqrt{5}+3\cdot\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
\(=4-3\cdot A\)
\(\Leftrightarrow A^3+3A-4=0\)
\(\Leftrightarrow A^3-A+4A-4=0\)
\(\Leftrightarrow A\left(A-1\right)\left(A+1\right)+4\left(A-1\right)=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)
\(\Leftrightarrow A=1\)
giải giúp mình bài này ới ạ mình đng cần gấp
Cho biểu thức
c=(căng x-2/căng x+2+căng x+2/căng x-2)nhân căng x+2/2 - 4 căng x/căng x-2
a)
\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{a-9}\)
\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{a-3\sqrt{a}+3+3\sqrt{a}-3a-9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{-2a-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{-2a-3}{a-9}\)
b) Để \(P=\frac{1}{3}\Rightarrow\frac{-2a-3}{a-9}=\frac{1}{3}\)
\(\Rightarrow3\left(-2a-3\right)=a-9\)
\(\Rightarrow-6a-9=a-9\)
\(\Rightarrow-6a-a=-9+9\)
\(\Rightarrow-7a=0\left(L\right)\)
Vậy ko có gt của a để P=1/3 ( mk ko chắc.....)
\(\sqrt{\sqrt{5}-\sqrt{5-\sqrt{21-4\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-\sqrt{\sqrt{20^2}-2.\sqrt{20}+1}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-\sqrt{\left(\sqrt{20}-1\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-\left|\sqrt{20}-1\right|}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5-\sqrt{20}+1}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{5^2}-2\sqrt{5}+1}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{\sqrt{5}-\left|\sqrt{5}-1\right|}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)
\(=1\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{5}+1}=1\)
1) \(\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=\left|2+\sqrt{5}\right|-\left|2-\sqrt{5}\right|\)
\(=2+\sqrt{5}+2-\sqrt{5}\)
\(=4\)
2) \(\sqrt{12-6\sqrt{3}}+\sqrt{12+6\sqrt{3}}\)
\(=\sqrt{3^2-2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}+\sqrt{3^2+2\cdot3\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{3}\right)^2}\)
\(=\left|3-\sqrt{3}\right|+\left|3+\sqrt{3}\right|\)
\(=3-\sqrt{3}+3+\sqrt{3}\)
\(=6\)
\(\sqrt{13-4\sqrt{3}}\)
\(=\sqrt{12-2.\sqrt{4}.\sqrt{3}+1}\)
\(=\sqrt{\sqrt{12^2}-2.\sqrt{1}.\sqrt{12}+\sqrt{1^2}}\)
\(=\sqrt{\left(\sqrt{12}-1\right)^2}\)
\(=\left|\sqrt{12}-1\right|\)
\(=\sqrt{12}-1\)
Câu 1: Sửa lạ đề chút nhé : 4x + 1 -> 4x -1
Đặt A = \(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)
=> \(\sqrt{2}.A\)= \(\sqrt{4x-1+2\sqrt{4x-1}+1}+\sqrt{4x-1-2\sqrt{4x-1}+1}\)
= \(\sqrt{\left(\sqrt{4x-1}+1\right)^2}+\sqrt{\left(\sqrt{4x-1}-1\right)^2}\)
= \(\left|\sqrt{4x-1}+1\right|+\left|\sqrt{4x-1}-1\right|\)
Vì \(\frac{1}{4}< x< \frac{1}{2}\Rightarrow0< 4x-1< 1\Rightarrow0< \sqrt{4x-1}< 1\)
nên \(\sqrt{2}A=\)\(\sqrt{4x-1}+1+1-\sqrt{4x-1}\)=2
=> \(A=2:\sqrt{2}=\sqrt{2}\)
Câu 2. Có: \(9-4\sqrt{2}=8-2.2\sqrt{2}+1=\left(2\sqrt{2}-1\right)^2\)
=> \(\sqrt{9-4\sqrt{2}}=2\sqrt{2}-1\)
=> \(4+\sqrt{9-4\sqrt{2}}=4+2\sqrt{2}-1=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)
=> \(\sqrt{4+\sqrt{9-4\sqrt{2}}}=\sqrt{2}+1\)
=> \(53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}=53-20\left(\sqrt{2}+1\right)=33-2.10\sqrt{2}=5^2-2.5.2\sqrt{2}+8=\left(5-2\sqrt{2}\right)^2\)
=> \(\sqrt{53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}}=5-2\sqrt{2}\)
\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)
\(\sqrt{53-20\sqrt{4}+\sqrt{9-4\sqrt{2}}}\)
=\(\sqrt{53-40+\sqrt{\left(2\sqrt{2}-1\right)^2}}\)
=\(\sqrt{13+2\sqrt{2}-1}\)=\(\sqrt{12+2\sqrt{2}}\)