Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\sqrt{10}+2\sqrt{6}+\sqrt{10}.\sqrt{4+\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{10}+2\sqrt{6}+\sqrt{40+10\sqrt{15}}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{10}+2\sqrt{6}+\sqrt{\left(5+\sqrt{15}\right)^2}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{4}+\sqrt{6}+\sqrt{10}+\sqrt{6}+\sqrt{9}+\sqrt{15}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)+\sqrt{3}\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
\(A=\sqrt{2}+\sqrt{3}\)
A = \(\frac{\sqrt{10}+2\sqrt{6}+5+\sqrt{15}}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
A= \(\frac{\left(\sqrt{2}^2+2\sqrt{2}\sqrt{3}+\sqrt{3}^2\right)+\sqrt{10}+\sqrt{15}}{MC}\)
A= \(\frac{\left(\sqrt{2}+\sqrt{3}\right)^2+\sqrt{5}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{5}}\)
A= \(\frac{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)}\)
A= \(\sqrt{2}+\sqrt{3}\)
cách nào ngắn bạn làm nhé:)) ( cười khinh thk ah t )
câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :
\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)
\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)
\(=3-\sqrt{6}+2\sqrt{6}-3\) ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )
\(=\sqrt{6}\)
Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)
=1
a) \(\frac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}=\frac{\sqrt{3}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{7}\left(\sqrt{5}-\sqrt{2}\right)}=\sqrt{\frac{3}{7}}\)
b) \(\frac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}=\frac{2\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\sqrt{5}\left(1-\sqrt{2}\right)-\sqrt{3}\left(1-\sqrt{2}\right)}=\frac{\left(2\sqrt{5}-\sqrt{3}\right)\left(\sqrt{3}-\sqrt{2}\right)}{\left(2\sqrt{5}-\sqrt{3}\right)\left(1-\sqrt{2}\right)}=\frac{\sqrt{3}-\sqrt{2}}{1-\sqrt{2}}\)
c) \(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}=\frac{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}=\frac{\sqrt{x}}{\sqrt{y}}\) (Bạn tự thêm đk)
d) \(\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}=\frac{\sqrt{a}-\sqrt{b}}{\sqrt{ab}-1}\) (Bạn tự thêm đk)
\(\frac{\sqrt{2+\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)
\(=\frac{\sqrt{2+\sqrt{3}}}{2}:\left(\frac{\sqrt{6\left(2+\sqrt{3}\right)}-4+\sqrt{2\left(2+\sqrt{3}\right)}}{2\sqrt{6}}\right)\)
\(=\frac{\sqrt{2+\sqrt{3}}}{2}.\left(\frac{2\sqrt{6}}{\sqrt{12+6\sqrt{3}}-4+\sqrt{4+2\sqrt{3}}}\right)\)
\(=\frac{\sqrt{6\left(2+\sqrt{3}\right)}}{\left|\sqrt{3}+3\right|-4+\left|\sqrt{3}+1\right|}\)
\(=\frac{\left|\sqrt{3}+3\right|}{\sqrt{3}+3-4+\sqrt{3}+1}\)
\(=\frac{\sqrt{3}+3}{2\sqrt{3}}\)
\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7-2\sqrt{10}}}\)
\(=\frac{\sqrt{3}+\sqrt{\left(\sqrt{2}\right)^2+6\sqrt{2}+9}-\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{6}+\left(\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}+1}-\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{10}+\left(\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}+\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}}\)
\(=\frac{\sqrt{3}+\sqrt{2}+3-\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}+\sqrt{2}}\)
\(=\frac{3}{2\sqrt{2}+1}\)