K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 8 2020

Lời giải:
$\sqrt{7+3\sqrt{5}}=\sqrt{\frac{14+6\sqrt{5}}{2}}$

\(=\sqrt{\frac{9+5+2.3\sqrt{5}}{2}}=\sqrt{\frac{(3+\sqrt{5})^2}{2}}=\frac{3+\sqrt{5}}{\sqrt{2}}\)

21 tháng 9 2021

\(\dfrac{1}{1-\sqrt{5}}+\dfrac{1}{\sqrt{5}-1}=\dfrac{-1+1}{\sqrt{5}-1}=\dfrac{0}{\sqrt{5}-1}=0\)

21 tháng 9 2021

\(\dfrac{1}{1-\sqrt{5}}+\dfrac{1}{\sqrt{5}-1}=\dfrac{1}{1-\sqrt{5}}-\dfrac{1}{1-\sqrt{5}}=0\)

7 tháng 5 2017

\(\left(3+\frac{\sqrt{5}}{\sqrt{10}}+\sqrt{3}+\sqrt{5}\right)-\left(3-\frac{\sqrt{5}}{\sqrt{10}}+\sqrt{3}-\sqrt{5}\right)=\sqrt{34.64911064}\)

21 tháng 9 2021

\(a,9\sqrt{5}+3\sqrt{20}-7\sqrt{45}=9\sqrt{5}+6\sqrt{5}-21\sqrt{5}=-6\sqrt{5}\\ b,\dfrac{2\sqrt{6}+\sqrt{40}}{\sqrt{3}+\sqrt{5}}=\dfrac{2\sqrt{6}+2\sqrt{10}}{\sqrt{3}+\sqrt{5}}\\ =\dfrac{2\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{2\sqrt{2}\left(5-3\right)}{5-3}=2\sqrt{2}\)

14 tháng 9 2017

\(A=\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)

C1:A2=\(3-\sqrt{5}+3+\sqrt{5}+2\sqrt{3-\sqrt{5}}.\sqrt{3+\sqrt{5}}\)

A2=\(6+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

A2=\(6+2\sqrt{9-5}\)

A2=6+4=10

A=\(\sqrt{10}\)

14 tháng 9 2017

\(A=\sqrt{\left(3+\sqrt{5}\right)}+\sqrt{\left(3-\sqrt{5}\right)}\)

\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(A^2=3+\sqrt{5}+3-\sqrt{5}+2\sqrt{\left(3+\sqrt{5}\right).\left(3-\sqrt{5}\right)}\)

\(A^2=6+2\sqrt{9-5}\)

\(A^2=6+2\sqrt{4}\)

\(A^2=8\)

\(\Rightarrow A=\sqrt{8}\)