Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=|2+\sqrt{3}|-|2-\sqrt{3}|\)
\(=2+\sqrt{3}-2+\sqrt{3}\)
\(=2\sqrt{3}\)
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=|3+\sqrt{2}|-|3-\sqrt{2}|\)
\(=3+\sqrt{2}-3+\sqrt{2}\)
\(=2\sqrt{2}\)
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{\left(3+2\sqrt{2}\right)^2}+\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=|3+2\sqrt{2}|+|3-2\sqrt{2}|\)
\(=3+2\sqrt{2}+3-2\sqrt{2}\)
\(=6\)
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(=\sqrt{\left(2+\sqrt{5}\right)^2}-\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=|2+\sqrt{5}|-|2-\sqrt{5}|\)
\(=2+\sqrt{5}-\sqrt{5}+2\)
\(=4\)
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{\left(1-\sqrt{5}\right)^2}\)
\(=|1+\sqrt{5}|-|1-\sqrt{5}|\)
\(=1+\sqrt{5}-\sqrt{5}+1\)
\(=2\)
\(A=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(A=\sqrt{3}+2+2-\sqrt{3}\)
A = 2 + 2
A = 4
\(B=\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}\)
\(B=\sqrt{2}+3+3-\sqrt{2}\)
B = 3 + 3
B = 6
\(C=\sqrt{17+12\sqrt{2}}+\sqrt{17-12\sqrt{2}}\)
\(C=3+2\sqrt{2}+3-2\sqrt{2}\)
C = 3 + 3
C = 6
\(D=\sqrt{9+4\sqrt{5}}-\sqrt{9-4\sqrt{5}}\)
\(D=\sqrt{5}+2-\sqrt{5}+2\)
D = 2 + 2
D = 4
\(E=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)
\(E=\sqrt{5}+1-\sqrt{5}+1\)
E = 1 + 1
E = 2
a)
\(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\\ =\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1-\sqrt{5}+1\\ =2\)
b) Sửa đề:
\(\sqrt{7+2\sqrt{6}}+\sqrt{7-2\sqrt{6}}-2\sqrt{6}\\ =\sqrt{\left(\sqrt{6}+1\right)^2}+\sqrt{\left(\sqrt{6}-1\right)^2}-2\sqrt{6}\\ =\sqrt{6}+1+\sqrt{6}-1-2\sqrt{6}\\ =0\)
c)
\(\sqrt{9+4\sqrt{5}}+\sqrt{9-4\sqrt{5}}-2\sqrt{5}\\ =\sqrt{9+2\sqrt{20}}+\sqrt{9-2\sqrt{20}}-2\sqrt{5}\\ =\sqrt{\left(\sqrt{5}+2\right)^2}+\sqrt{\left(\sqrt{5}-2\right)^2}-2\sqrt{5}\\ =\sqrt{5}+2+\sqrt{5}-2-2\sqrt{5}\\ =0\)
1.a)
\(2\sqrt{3}=\sqrt{12}>\sqrt{9}=3.\)
\(3\sqrt{2}=\sqrt{18}>\sqrt{16}=4.\)
Suy ra VT > 7
1.b)
\(\sqrt{16}+\sqrt{25}=4+5=9\)
2.a)
\(\sqrt{21-6\sqrt{6}}=\sqrt{\left(3\sqrt{2}\right)^2-6\sqrt{6}+3}=3\sqrt{2}-\sqrt{3}\)
b)\(\sqrt{9-2\sqrt{14}}=\sqrt{\frac{18-4\sqrt{14}}{2}}=\frac{\sqrt{14}-2}{\sqrt{2}}=\sqrt{7}-1\)
Các câu còn lại bạn làm tương tự nhé!
c) \(\sqrt{4-\sqrt{7}}=\frac{1}{\sqrt{2}}.\sqrt{8-2\sqrt{7}}=\frac{1}{\sqrt{2}}\sqrt{7-2\sqrt{7}+1}\)
\(=\frac{1}{\sqrt{2}}\sqrt{\left(\sqrt{7}-1\right)^2}=\frac{\sqrt{2}\left(\sqrt{7}-1\right)}{2}\)
d) \(\sqrt{4+2\sqrt{3}-\sqrt{4-2\sqrt{3}}}=\sqrt{4+2\sqrt{3}-\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{4+2\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{4+2\sqrt{3}-\sqrt{3}+1}=\sqrt{5+\sqrt{3}}\)
a) ĐKXĐ : \(0\le a\ne1\)
\(\frac{\sqrt{a}-a}{\sqrt{a}-1}=\frac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}=-\sqrt{a}\)
b) ĐKXĐ : \(b\ne0,a\ne-\sqrt{b}\)
\(\frac{a-\sqrt{b}}{\sqrt{b}}:\frac{\sqrt{b}}{a+\sqrt{b}}=\frac{a-\sqrt{b}}{\sqrt{b}}.\frac{a+\sqrt{b}}{\sqrt{b}}=\frac{a^2-b}{b}=\frac{a^2}{b}-1\)
c) \(2\sqrt{5}-\sqrt{125}-\sqrt{80}+\sqrt{605}=2\sqrt{5}-5\sqrt{5}-4\sqrt{5}+11\sqrt{5}=\sqrt{5}\left(2-5-4+11\right)\)\(=4\sqrt{5}\)
d) \(\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{2}.\sqrt{7}+\sqrt{7}\right).\sqrt{7}+7\sqrt{8}\)
\(=7\left(2-2\sqrt{2}+1\right)+14\sqrt{2}=7\left(2-2\sqrt{2}+1+2\sqrt{2}\right)=7.3=21\)
e) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
a/ \(A=\frac{30\left(\sqrt{6}-1\right)}{5}+\frac{2\left(\sqrt{6}+2\right)}{2}-\frac{6\left(3+\sqrt{6}\right)}{3}=6\sqrt{6}-6+\sqrt{6}+2-6-2\sqrt{6}\)
\(A=5\sqrt{6}-10\)
\(B=\sqrt{17-6\sqrt{2}+\sqrt{8+4\sqrt{2}+1}}\)
\(B=\sqrt{17-6\sqrt{2}+\sqrt{\left(2\sqrt{2}+1\right)^2}}=\sqrt{18-4\sqrt{2}}\)
Đến đây ko rút gọn được nữa, nhưng nếu đề là:
\(B=\sqrt{17+6\sqrt{2}+\sqrt{8+4\sqrt{2}+1}}=\sqrt{18+8\sqrt{2}}=4+\sqrt{2}\)
c/
\(C=\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}+\sqrt{\left(\sqrt{7}+1\right)^2}\)
\(C=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\)
\(D=\sqrt{a-2\sqrt{a}+1}-\sqrt{a-8\sqrt{a}+16}\)
\(D=\sqrt{\left(\sqrt{a}-1\right)^2}-\sqrt{\left(4-\sqrt{a}\right)^2}=\sqrt{a}-1-\left(4-\sqrt{a}\right)=2\sqrt{a}-5\)
\(E=\sqrt{a-2+2\sqrt{a-2}+1}+\sqrt{a-2-2\sqrt{a-2}+1}\) (\(a\ge2\))
\(E=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)
\(E=\sqrt{a-2}+1+\left|\sqrt{a-2}-1\right|\)
\(\Rightarrow\left[{}\begin{matrix}E=2\sqrt{a-2}\left(a\ge3\right)\\E=2\left(2\le a\le3\right)\end{matrix}\right.\)
\(F=\sqrt[3]{10+6\sqrt{3}}-\sqrt{3}=\sqrt[3]{1+3.1.\sqrt{3}+3.1.\sqrt{3}^2+\sqrt{3}^3}-\sqrt{3}\)
\(F=\sqrt[3]{\left(1+\sqrt{3}\right)^3}-\sqrt{3}=1+\sqrt{3}-\sqrt{3}=1\)
\(G=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\Rightarrow G^3=\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)^3\)
\(\Rightarrow G^3=14+3\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)\left(\sqrt[3]{49-50}\right)\)
\(\Rightarrow G^3=14-3G\Rightarrow G^3+3G-14=0\)
\(\Rightarrow G=2\)
Ta giải như sau:
\(A=\sqrt{1+2\sqrt{6}+6}-\sqrt{1-2\sqrt{6}+6}\)
\(=\sqrt{\left(1+\sqrt{6}\right)^2}-\sqrt{\left(1-\sqrt{6}\right)^2}\)
\(=1+\sqrt{6}+1-\sqrt{6}\)
\(=2\)
\(B^2=2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}=2+B\)
\(\Leftrightarrow B^2-B-2=0\)
\(\Leftrightarrow\left(B+1\right)\left(B-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}B=-1\\B=2\end{cases}}\)Ta lấy B=2 vì B>0
\(C=\sqrt{2\sqrt{2\sqrt{2...}}}\)
\(\Rightarrow C^2=2\sqrt{2\sqrt{2\sqrt{2...}}}=2C\)
\(\Leftrightarrow C^2-2C=0\)
\(\Leftrightarrow C\left(C-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}C=0\\C=2\end{cases}}\)Ta lấy C=2 vì C>0
Ok r bn nhó ^^