Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Vì x > 0 nên |x| = x; y 2 > 0 với mọi y ≠ 0)
(Vì x 2 ≥ 0 với mọi x; và vì y < 0 nên |2y| = – 2y)
(Vì
x
2
y
4
=
(
x
y
2
)
2
>
0
với mọi x ≠ 0, y ≠ 0)
(Vì x < 0 nên |5x| = – 5x; y > 0 nên | y 3 | = y 3 )
a) \(A=\dfrac{x\sqrt{y}+y\sqrt{x}}{x+2\sqrt{xy}+y}\)
\(A=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)^2}\)
\(A=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
b) \(B=\dfrac{x\sqrt{y}-y\sqrt{x}}{x-2\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)^2}\)
\(B=\dfrac{\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
c) \(C=\dfrac{3\sqrt{a}-2a-1}{4a-4\sqrt{a}+1}\)
\(C=\dfrac{-\left(2a-3\sqrt{a}+1\right)}{\left(2\sqrt{a}\right)^2-2\sqrt{a}\cdot2\cdot1+1^2}\)
\(C=\dfrac{-\left(\sqrt{a}-1\right)\left(2\sqrt{a}-1\right)}{\left(2\sqrt{a}-1\right)^2}\)
\(C=\dfrac{-\sqrt{a}+1}{2\sqrt{a}-1}\)
d) \(D=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)
\(D=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{\sqrt{a}-2}\)
\(D=\sqrt{a}+2-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)
\(D=\left(\sqrt{a}+2\right)-\left(\sqrt{a}+2\right)\)
\(D=0\)
\(5xy.\sqrt{\frac{25x^2}{y^6}}=5xy.\sqrt{\frac{5^2x^2}{\left(y^3\right)^2}}=5xy.\sqrt{\frac{\left(5x\right)^2}{\left(y^3\right)^2}}5xy.\sqrt{\left(\frac{5x}{y^3}\right)^2}=5xy.\frac{5x}{y^3}=\frac{5^2x^2}{y^2}=\frac{\left(5x\right)^2}{y^2}=\left(\frac{5x}{y}\right)^2\)
Chúc bạn học tốt
5xy.\(\sqrt{\frac{25x^2}{y^6}}\)
=5xy.\(\frac{\left|5x\right|}{\left|y^3\right|}\){x<0 nên |5x|=-5x
=\(\orbr{\begin{cases}5xy.\frac{-5x}{y^3}\\5xy.\frac{-5x}{-y^3}\end{cases}}\)
=\(\orbr{\begin{cases}\frac{-25x^2}{y^3}\\\frac{25x^2}{y^3}\end{cases}}\)
a/ \(\frac{y}{x}.\left(\sqrt{\frac{x^2}{y^4}}\right)=\frac{y}{x}.\frac{x}{y^2}=\frac{1}{y}\)
b/ \(2y^2.\sqrt{\frac{x^4}{4y^2}}=2y^2.\sqrt{\frac{\left(x^2\right)^2}{\left(-2y\right)^2}}=2y^2.\frac{x^2}{-2y}=-y.x^2\)
c/ \(5xy.\sqrt{\frac{25x^2}{y^6}}=5xy.\sqrt{\frac{\left(-5x\right)^2}{\left(y^3\right)^2}}=5xy.\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\)
d/\(0,2.x^3y^3.\sqrt{\frac{4^2}{\left(x^2y^4\right)^2}}=\frac{1}{5}.x^3y^3.\frac{4}{x^2y^4}=\frac{4x}{5y}\)
Trần Việt Linh sai phần b,c,d r bn
Sửa lại:
b) 2y\(^2\).\(\sqrt{\frac{x^4}{4y^2}}\) với y<0
Ta có : 2y\(^2\).\(\sqrt{\frac{x^4}{4y^2}}\)=2y\(^2\).\(\frac{x^2}{\left|y\right|}\)
Vì y>0 nên |y| = -y.Ta có : 2y\(^2\).\(\frac{x^2}{2\left|y\right|}\)= -2y\(^2\).\(\frac{x^2}{2y}\) = -2x\(^2\)y
c) 5xy.\(\sqrt{\frac{25x^2}{y^6}}\) với x<0,y>0
Ta có :5xy\(\sqrt{\frac{25x^2}{y^6}}\)=5xy.\(\frac{5\left|x\right|}{y^3}\) ( y>0)
Vì x<0 nên |x| =-x .Ta có : 5xy.\(\frac{5\left|x\right|}{y^3}\)= -5xy.\(\frac{5x}{y^3}\) =\(\frac{-25x^2}{y^2}\)
d) 0,,2x\(^3\)y\(^3\).\(\sqrt{\frac{16}{x^4y^8}}\) với x#o,y#0
Ta có: 0,2x\(^3\)y\(^3\)\(\frac{4}{x^2y^4}\)=\(\frac{0,8x}{y}\) ( vì #0,y#0)
a) = . = . = vì x > 0.
Do đó = .
b) = . = ..
Vì y < 0 nên │y│= -y. Do đó = . = .
c) 5xy. = 5xy. = 5xy..
Vì x < 0, y > 0 nên = -x và = .
Do đó: 5xy = 5xy. = -.
d) 0,2 = = 0,2 =
Nếu x > 0 thì > 0 nên . Do đó 0,2 = .
Nếu x < 0 thì < 0 nên . Do đó 0,2 = -.
a) = . = . = vì x > 0.
Do đó = .
b) = . = ..
Vì y < 0 nên │y│= -y. Do đó = . = .
c) 5xy. = 5xy. = 5xy..
Vì x < 0, y > 0 nên = -x và = .
Do đó: 5xy = 5xy. = -.
d) 0,2 = = 0,2 =
Nếu x > 0 thì > 0 nên . Do đó 0,2 = .
Nếu x < 0 thì < 0 nên . Do đó 0,2 = -.