Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=2+\sqrt{3}-2+\sqrt{3}=VP\)
Bài 1.
Ta có : \(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}\)
\(=\sqrt{3+4\sqrt{3}+4}-\sqrt{3-4\sqrt{3}+4}\)
\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(\sqrt{3}-2\right)^2}\)
\(=\left|\sqrt{3}+2\right|-\left|\sqrt{3}-2\right|\)
\(=\sqrt{3}+2-\left(2-\sqrt{3}\right)\)
\(=\sqrt{3}+2-2+\sqrt{3}=2\sqrt{3}\left(đpcm\right)\)
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
a,\(\sqrt{x-4+4\sqrt{x-4}+4}\) +\(\sqrt{x-4-4\sqrt{x-4}+4}\)
=\(\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\) (vi x>=8)
=\(\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
b, \(\sqrt{x-1+2\sqrt{x\left(x-1\right)}+x}+\sqrt{x-1-2\sqrt{x\left(x-1\right)}+x}\)
=\(\sqrt{x-1}+\sqrt{x}+\left|\sqrt{x-1}-\sqrt{x}\right|\)
=\(\sqrt{x}+\sqrt{x-1}+\sqrt{x}-\sqrt{x-1}\) =\(2\sqrt{x}\)
c,d sai dau bai hay sao y
a) Ta có: \(A=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(=\sqrt{4-2\cdot2\cdot\sqrt{3}+3}-\sqrt{4+2\cdot2\cdot\sqrt{3}\cdot3}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\)
\(=2-\sqrt{3}-\left(2+\sqrt{3}\right)\)(Vì \(2>\sqrt{3}>0\))
\(=2-\sqrt{3}-2-\sqrt{3}\)
\(=-2\sqrt{3}\)
b) Ta có: \(B=\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right)\cdot\frac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}}\)
\(=\left(\frac{\left(\sqrt{x}+1\right)\cdot\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}-2\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}-2\right)}\right)\cdot\frac{\left(\sqrt{x}+2\right)\cdot\left(x-4\right)}{\sqrt{x}}\)
\(=\frac{x+3\sqrt{x}+2-\left(x-3\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}-2\right)}\cdot\frac{\left(\sqrt{x}+2\right)^2\cdot\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(=\frac{x+3\sqrt{x}+2-x+3\sqrt{x}-2}{\sqrt{x}}\)
\(=\frac{6\sqrt{x}}{\sqrt{x}}=6\)
a) Bình phương lên ta đc
\(A^2=7-4\sqrt{3}+7+4\sqrt{3}-2\sqrt{7^2-\left(4\sqrt{3}\right)^2}=14-2=12\)
\(\Rightarrow A=\mp\sqrt{12}\)
\(đkxđ\Leftrightarrow x\ge0\)
\(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}.\sqrt{x}-1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\frac{x-1}{\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)
\(=\frac{x-1}{\sqrt{x}}:\frac{x-1-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(x-1\right)\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}.\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-1}{\sqrt{x}}\)
\(b,P.\sqrt{x}=6\sqrt{x}-3-\sqrt{x}-4\)
\(\Rightarrow\frac{x-1}{\sqrt{x}}.\sqrt{x}=5\sqrt{x}-7\)
\(\Rightarrow x-5\sqrt{x}+6=0\)
\(\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=3\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=9\end{cases}}}\)
Vậy \(x\in\left\{4;9\right\}\)
x+4cănx+4=(cănx+2)^2
x-4=(cănx-2)(cănx+2)
rồi quy đồng rút gọn