Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phương trình tương đương:
sin2x+cos2x+\(\sqrt{2}\)sin(x+\(\frac{\pi}{4}\))+2sinx.cosx+cos2x-sin2x=0
<=> 2cos2x+2sinx.cosx+\(\sqrt{2}\)sin(x+\(\frac{\pi}{4}\))=0
<=> 2cosx(sinx+cosx)+\(\sqrt{2}\)sin(x+\(\frac{\pi}{4}\))=0
<=>(2cosx+1).\(\sqrt{2}\)sin(x+\(\frac{\pi}{4}\))=0
<=>\(\left[\begin{array}{nghiempt}sin\left(x+\frac{\pi}{4}\right)=0\\2cosx+1=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=k\pi-\frac{\pi}{4}\\x=\pm\frac{1}{2}+k2\pi\end{array}\right.\)với k\(\in\)Z
pt có 2 nghiệm như trên
a: pi/2<a<pi
=>sin a>0
\(sina=\sqrt{1-\left(-\dfrac{1}{\sqrt{3}}\right)^2}=\dfrac{\sqrt{2}}{\sqrt{3}}\)
\(sin\left(a+\dfrac{pi}{6}\right)=sina\cdot cos\left(\dfrac{pi}{6}\right)+sin\left(\dfrac{pi}{6}\right)\cdot cosa\)
\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{\sqrt{3}}+\dfrac{1}{2}\cdot-\dfrac{1}{\sqrt{3}}=\dfrac{\sqrt{6}-2}{2\sqrt{3}}\)
b: \(cos\left(a+\dfrac{pi}{6}\right)=cosa\cdot cos\left(\dfrac{pi}{6}\right)-sina\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)
c: \(sin\left(a-\dfrac{pi}{3}\right)\)
\(=sina\cdot cos\left(\dfrac{pi}{3}\right)-cosa\cdot sin\left(\dfrac{pi}{3}\right)\)
\(=\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}=\dfrac{\sqrt{2}+\sqrt{3}}{2\sqrt{3}}\)
d: \(cos\left(a-\dfrac{pi}{6}\right)\)
\(=cosa\cdot cos\left(\dfrac{pi}{6}\right)+sina\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=\dfrac{-1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{\sqrt{2}}{\sqrt{3}}\cdot\dfrac{1}{2}=\dfrac{-\sqrt{3}+\sqrt{2}}{2\sqrt{3}}\)
3.3 d)
\(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\ \Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\ \Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\)
3.4 a)
\(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \)
Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\)
Ta được:
\(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\ \)
Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)và \(sin\alpha=\dfrac{2}{\sqrt{5}}\)
Phương trình tương đương:
\(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\ \Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\)
c/
\(\Leftrightarrow sin3x-\sqrt{3}cos3x=sinx+\sqrt{3}cosx\)
\(\Leftrightarrow\frac{1}{2}sin3x-\frac{\sqrt{3}}{2}cos3x=\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\)
\(\Leftrightarrow sin\left(3x-\frac{\pi}{3}\right)=sin\left(x+\frac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{\pi}{3}=x+\frac{\pi}{3}+k2\pi\\3x-\frac{\pi}{3}=\frac{2\pi}{3}-x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.\)
a/
\(\Leftrightarrow\sqrt{3}cos2x-\left(sin^2x+cos^2x-2sinx.cosx\right)=2\)
\(\Leftrightarrow\sqrt{3}cos2x-1+sin2x=2\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}cos2x+\frac{1}{2}sin2x=\frac{3}{2}\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{3}\right)=\frac{3}{2}\)
Vế phải lớn hơn 1 nên pt vô nghiệm
b/
\(\Leftrightarrow\frac{5}{2}\left(1+cos2x\right)+2sin2x=4\)
\(\Leftrightarrow4sin2x+5cos2x=3\)
\(\Leftrightarrow\frac{4}{\sqrt{41}}sin2x+\frac{5}{\sqrt{41}}cos2x=\frac{3}{\sqrt{41}}\)
Đặt \(\frac{4}{\sqrt{41}}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow sin2x.cosa+cos2x.sina=\frac{3}{\sqrt{41}}\)
\(\Leftrightarrow sin\left(2x+a\right)=\frac{3}{\sqrt{41}}=sinb\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+a=b+k2\pi\\2x+a=\pi-b+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{b}{2}-\frac{a}{2}+k\pi\\x=\frac{\pi}{2}-\frac{a}{2}-\frac{b}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x+\frac{\pi}{3}\right)=\frac{2}{3}\)
\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{3}=arcsin\left(\frac{2}{3}\right)+k2\pi\\2x+\frac{\pi}{3}=\pi-arcsin\left(\frac{2}{3}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+\frac{1}{2}arcsin\left(\frac{2}{3}\right)+k\pi\\x=\frac{\pi}{3}-\frac{1}{2}arcsin\left(\frac{2}{3}\right)+k\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)
\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
d/
\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)
\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)
\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)
\(\Leftrightarrow3cos^2x-4cosx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)
Đề bài là: \(sin^2\left(\dfrac{\pi}{8}+a\right)-sin^2\left(\dfrac{\pi}{8}-a\right)-\dfrac{\sqrt{2}}{2}sin2a\) đúng không nhỉ?
\(=\dfrac{1}{2}-\dfrac{1}{2}cos\left(\dfrac{\pi}{4}+2a\right)-\dfrac{1}{2}+\dfrac{1}{2}cos\left(\dfrac{\pi}{4}-2a\right)-\dfrac{\sqrt{2}}{2}sin2a\)
\(=\dfrac{1}{2}\left[cos\left(\dfrac{\pi}{4}-2a\right)-cos\left(\dfrac{\pi}{4}+2a\right)\right]-\dfrac{\sqrt{2}}{2}sin2a\)
\(=sin\left(\dfrac{\pi}{4}\right).sin2a-\dfrac{\sqrt{2}}{2}sin2a=\dfrac{\sqrt{2}}{2}sin2a-\dfrac{\sqrt{2}}{2}sin2a=0\)