Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(A=\left(x+y\right)^2+4xy=x^2+2xy+y^2+4xy=x^2+6xy+y^2\)
2) \(B=\left(6x-2\right)^2+4\left(3x-1\right)\left(2+y\right)+\left(y+2\right)^2\)
\(=\left(6x-2\right)^2+2\left(6x-2\right)\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(6x-2+y+2\right)^2=\left(6x+y\right)^2=36x^2+12xy+y^2\)
3) \(C=\left(x-y\right)^2+2\left(x^2-y^2\right)+\left(x+y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x-y+x+y\right)^2=\left(2x\right)^2=4x^2\)
\(\left(x+2\right)^2+4\left(x+2\right)\left(x-2\right)+\left(x-4\right)^2\\ =x^2+4x+4+4x^2-16+x^2-8x+16\\ =6x^2-4x+4\)
(x + 2)2 + 4(x + 2)(x - 2) + (x - 4)2
<=> x2 + 4x + 4 + 4(x2 - 4) + x2 - 8x + 16
<=> x2 + 4x + 4 + 4x2 - 16 + x2 - 8x + 16
<=> x2 + 4x2 + x2 + 4x - 8x + 4 - 16 + 16
<=> 6x2 - 4x + 4
\(A=\left(x-y\right)^2-2\left(x^2-xy-y^2\right)=x^2-2xy+y^2-2x^2+2xy+2y^2\)
\(=-x^2+3y^2\)
\(3\left(x-y\right)^2-2\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)\)
\(=3.\left(x^2-2xy+y^2\right)-2\left(x^2+2xy+y^2\right)-x^2+y^2\)
\(=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\)
\(=2y^2-10xy\)
Lời giải:
$x(x+y)-y(x+y)+x^2+y^2=(x-y)(x+y)+x^2+y^2$
$=x^2-y^2+x^2+y^2=2x^2$
x + y 2 + x - y 2
= x 2 + 2xy + y 2 + x 2 – 2xy + y 2
= 2 x 2 + 2 y 2
( x + y )2 + ( x - y )2
= ( x + y ) . ( x + y ) + ( x - y ) . ( x - y )
= ( x2 + xy ) + ( xy + y2 ) + ( x2 - xy ) - ( xy - y2 )
= x2 + xy + xy + y2 + x2 - xy - xy - y2
= ( x2 + x2 ) + ( xy + xy ) + ( y2 - y2 ) + ( -xy - xy )
= 2x2 + 2xy - 2xy
= 2x2