Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
\((x+y)(x-y)+(xy^4-x^3y^2) \div (xy^2) \)
`= x(x-y) + y(x-y) + xy^4 \div xy^2 - x^3y^2 \div xy^2`
`= x^2 - xy + xy - y^2 + y^2 - x^2`
`= (x^2 - x^2) + (-xy + xy) + (-y^2 + y^2)`
`= 0`
a)A=(2x+3y)(x2-xy+1)-x2(2x-y)-3x tại x=-1;y=2
Rút gọn:
A = 2x3 - 2x2y + 2x + 3x2y - 3xy2+ 3y - 2x3 + x2y - 3x (phá ngoặc)
=> A = 2x2y - 3xy2 - x + 3y
Thay x = -1 và y = 2; ta được:
A = 23
b)B=2xy.(1/4x2-3y)+5y(xy-x3+1) tại x=1;y=1/2
B = x3y/2 - 6xy2 + 5xy2 - 5x3y + 5y (phá ngoặc)
B = -9x3y/10 - xy2 + 5y
Thay x = 1 và y = 1/2 ta được:
B = 0
Bài này tuy có hơi cồng kềnh chút nhưng chỉ cần em chịu khó phá ngoặc là sẽ giải quyết được nhé!
\((x+y)^3-(x-y)^3\)
\(=x^3+3x^2y+3xy^2+y^3-(x^3-3x^2y+3xy^2-y^3)\)
\(=6x^2y+2y^3\)
Cách khác:
Ta có: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left[\left(x+y\right)-\left(x-y\right)\right]\left[\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
\(=6x^2y+2y^3\)
\(\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)
\(=3xy\left(x+y\right)\)
\(A=\left(x-y\right)^2-2\left(x^2-xy-y^2\right)=x^2-2xy+y^2-2x^2+2xy+2y^2\)
\(=-x^2+3y^2\)