\(\sqrt{18}.\sqrt{2-\sqrt{3}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2021

`sqrt{18}*sqrt{2-sqrt3}`

`=sqrt2*sqrt9*sqrt{2-sqrt3}`

`=3*sqrt{4-2sqrt3}`

`=3*sqrt{3-2sqrt3+1}`

`=3*sqrt{(sqrt3-1)^2}`

`=3*(sqrt3-1)`

`=3sqrt3-3`

23 tháng 6 2019

a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)

\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)

b) Tương tự a) đ/s =5

7 tháng 12 2016

\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

\(=\sqrt{4.5}-\sqrt{9.5}+3\sqrt{18}+\sqrt{4.18}\)

\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+2\sqrt{18}\)

\(=-\sqrt{5}+5\sqrt{18}\)

8 tháng 12 2016

\(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)

\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+2\sqrt{18}\)

\(=-\sqrt{5}+5\sqrt{18}\)

13 tháng 8 2018

\(B=\frac{9\sqrt{5}+3\sqrt{27}}{\sqrt{5}+\sqrt{3}}=\frac{9\sqrt{5}+9\sqrt{3}}{\sqrt{5}+\sqrt{3}}=\frac{9\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{5}+\sqrt{3}}=9\)

\(C=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}.\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)

mik chỉnh lại đề

\(D=\frac{3\sqrt{8}-2\sqrt{12}+\sqrt{20}}{3\sqrt{18}-2\sqrt{27}+\sqrt{45}}=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}\)

\(=\frac{2\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}{3\left(3\sqrt{2}-2\sqrt{3}+\sqrt{5}\right)}=\frac{2}{3}\)

11 tháng 5 2024

$\dfrac{\sqrt{3}}{8}a^3$.

12 tháng 4 2020

Ta có : 

\(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}\)

\(=\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-\sqrt{128}}}}\)

Ta có : 

\(18-\sqrt{128}=18-8\sqrt{2}=16-2.4.\sqrt{2}+2=\left(4-\sqrt{2}\right)^2\)

Vậy 

\(\sqrt{18-\sqrt{128}}=4-\sqrt{2}\)

Thay vào ta có

\(\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{18-\sqrt{128}}}}\)

\(=\sqrt{6-2\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}\)

\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)

Lại có : 

\(4+2\sqrt{3}=3+2.1.\sqrt{3}+1=\left(\sqrt{3}+1\right)^2\)

Do đó : 

\(\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

Vậy : 

\(\sqrt{6-2\sqrt{4+2\sqrt{3}}}=\sqrt{6-2\left(\sqrt{3}+1\right)}\)

\(=\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3-2.1.\sqrt{3}+1}\)

\(=\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}-1\)

Vậy : \(\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}=\sqrt{3}-1\)