\(\left(\frac{1}{1-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

\(\left(\frac{1}{1-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)

\(=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1-\sqrt{a}}\right).\frac{a-2\sqrt{a}+1}{\sqrt{a}+1}\)

\(=\left(\frac{0}{1-\sqrt{a}}\right).\frac{a-2\sqrt{a}+1}{\sqrt{a}+1}\)

\(=0.\frac{a-2\sqrt{a}+1}{\sqrt{a}+1}\)

\(=0\)

\(A=\left(\frac{1}{1-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)   đkxđ:\(a>0;a\ne1\)

\(A=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{1-\sqrt{a}}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}}\)\

\(A=0\)

9 tháng 10 2020

a)

\(=\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2+4\sqrt{a}\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{1}{2a\sqrt{a}}\)

\(=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}.\frac{1}{2a\sqrt{a}}\)

\(=\frac{4a\sqrt{a}}{a-1}.\frac{1}{2a\sqrt{a}}=\frac{2}{a-1}\)

b) \(\frac{2}{a-1}=a\Rightarrow a^2-a-2=0\)

Ta có: 1+1+(-2)=0, nên pt có 2 nghiệm a1=-1<0 (không thỏa mãn đk)=> loại

a2=2(thỏa mãn đk)=> chọn

Vậy a=2 thì P=a

16 tháng 10 2016

\(P=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\cdot\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{a-1-a+4}\)

\(=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

16 tháng 10 2016

\(=\frac{\sqrt{a}-2}{\sqrt{a}}\)

13 tháng 7 2019

a) ĐKXĐ : \(a>0;a\ne1\)

\(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\right)\)

\(Q=\left(\frac{\sqrt{a}-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\sqrt{a}}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}\right)\)

\(Q=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}:\frac{\left(a-1\right)-\left(a-4\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}=\frac{1}{\left(\sqrt{a}-1\right)\sqrt{a}}.\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{3}\)

\(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}\)

b) \(Q=\frac{\sqrt{a}+2}{3\sqrt{a}}>2\Rightarrow\sqrt{a}-6\sqrt{a}+2>0\Rightarrow-5\sqrt{a}>-2\Rightarrow0< \sqrt{a}< \frac{2}{5}\)

\(\Rightarrow0< a< \frac{4}{25}\)

Ý tưởng : tử và mẫu có thể đặt nhân tử chung dc, ta rút gọn tử và mẫu cho nha, sau đó làm tiếp...

19 tháng 8 2019

\(B=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{1}{\sqrt{a}}\)

\(=\left(\frac{\sqrt{a}^3-1}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{a^3+1}{\sqrt{a}\left(\sqrt{a}+1\right)}\right):\frac{1}{\sqrt{a}}\)

\(=\left(\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\)\(:\frac{1}{\sqrt{a}}\)

\(=\left(\frac{\sqrt{a}-1}{\sqrt{a}}-\frac{\sqrt{a}+1}{\sqrt{a}}\right):\frac{1}{\sqrt{a}}\)

\(=\frac{\sqrt{a}-1-\sqrt{a}-1}{\sqrt{a}}:\frac{1}{\sqrt{a}}=\frac{-2\sqrt{a}}{\sqrt{a}}=-2\)

3 tháng 7 2018

ĐK:  \(a>0;a\ne1\)

\(S=\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}\)

\(=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\frac{a-\sqrt{a}+1}{\sqrt{a}}\)

\(=\frac{a+\sqrt{a}+1}{\sqrt{a}}-\frac{a-\sqrt{a}+1}{\sqrt{a}}\)

\(=\frac{2\sqrt{a}}{\sqrt{a}}=2\)

4 tháng 8 2019

\(A=\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x}-1}\right)\)\(:\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}-2}\right)\)

\(=\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{\left(\sqrt{x}-1-\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}-4-\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{-3}\)\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

\(b,A=0\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=0\Leftrightarrow\sqrt{x}-2=0\)

Mà \(\sqrt{x}+2\ne0\)\(\Rightarrow\)không có giá trị nào  của x thỏa mãn \(A=0\)