K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(x-y+z)²+(z-y)²-2(x-y+z)(z-y)

[(x−y+z)+(y−z)]2[(x−y+z)+(y−z)]2

(x−y+z+y−z)2(x−y+z+y−z)2

x2

Ta có: x+y+z=0

⇔(x+y+z)2=0⇔(x+y+z)2=0

⇔x2+y2+z2+2xy+2yz+2xz=0⇔x2+y2+z2+2xy+2yz+2xz=0(1)

Ta có: K=x2+y2+z2(x−y)2+(y−z)2+(z−x)2K=x2+y2+z2(x−y)2+(y−z)2+(z−x)2

=x2+y2+z2x2−2xy+y2+y2−2yz+z2+z2−2xz+x2=x2+y2+z2x2−2xy+y2+y2−2yz+z2+z2−2xz+x2

=x2+y2+z23x2+3y2+3z2−x2−y2−z2−2xy−2yz−2xz=x2+y2+z23x2+3y2+3z2−x2−y2−z2−2xy−2yz−2xz

=x2+y2+z23(x2+y2+z2)−(x2+y2+z2+2xy+2yz−2xz)=x2+y2+z23(x2+y2+z2)−(x2+y2+z2+2xy+2yz−2xz)

=x2+y2+z23(x2+y2+z2)=13=x2+y2+z23(x2+y2+z2)=13

Vậy: K=13K=13

19 tháng 12 2020

Ta có: x+y+z=0

\(\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)(1)

Ta có: \(K=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

\(=\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}\)

\(=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2-x^2-y^2-z^2-2xy-2yz-2xz}\)

\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz-2xz\right)}\)

\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)

Vậy: \(K=\dfrac{1}{3}\)

19 tháng 12 2020

\(K=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)

\(K=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\dfrac{1}{3}\)

1 tháng 8 2019

(x + y + z)2 – 2.(x + y + z).(x + y) + (x + y)2

= [(x + y + z) – (x + y)]2 (Áp dụng HĐT (2) với A = x + y + z ; B = x + y)

= z2.

15 tháng 8 2019

x - y + z 2  +  z - y 2  + 2(x – y + z)(y – z)

=  x - y + z 2  + 2(x – y + z)(y – z) +  y - z 2

= x - y + z + y - z 2 = x 2

16 tháng 7 2016

\(\left(x+y-z\right)^2+2.\left(x+y-z\right).\left(z-y\right)+\left(y-z\right)^2=\left[\left(x+y-z\right)+\left(z-y\right)\right]^2=x^2\)

Sai đề.

17 tháng 8 2015

=(x-y+z) + 2.(x-y+z).(y-z)+ (y-z)2=(x-y+z+y-z)2=x2

17 tháng 8 2015

 

(x-y+z)+ (z-y)2 + 2.(x-y+z).(y-z)

= (x-y+z)+ (y-z)2 + 2.(x-y+z).(y-z)

=[(x-y+z)+(y-z)]2

=(x-y+z+y-z)2

=x2

6 tháng 7 2015

\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2\)

\(=\left(x-y+z+y-z\right)^2\)

\(=x^2\)

30 tháng 7 2017

\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(z+x\right)\\z=-\left(x+y\right)\end{cases}}\)

\(\Rightarrow P=\frac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{\left[-\left(y+z\right)\right]^2+\left[-\left(z+x\right)\right]^2+\left[-\left(x+y\right)\right]^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{\left(y+z\right)^2+\left(z+x\right)^2\left(x+y\right)^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{-\left[\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=-1\)

30 tháng 7 2017

Mik mới biết làm câu a thôi còn câu b thì từ từ mik nghĩ đã nhé @-@

Chúc bn học giỏi nhoa!!!

9 tháng 9 2018

hằng đẳng thức nha đổi vị trí tth]s 2 xuoong3 và 3 lên 2 ra rồi tự làm nha

9 tháng 9 2018

\(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(\left(x-y+z\right)^2+\left(z-y\right)^2-2\left(x-y+z\right)\left(z-y\right)\)

\(\left[\left(x-y+z\right)-\left(z-y\right)\right]^2\)

\(\left(x-y+z-z+y\right)^2\)

\(x^2\)