Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x+y+z=0
⇔(x+y+z)2=0⇔(x+y+z)2=0
⇔x2+y2+z2+2xy+2yz+2xz=0⇔x2+y2+z2+2xy+2yz+2xz=0(1)
Ta có: K=x2+y2+z2(x−y)2+(y−z)2+(z−x)2K=x2+y2+z2(x−y)2+(y−z)2+(z−x)2
=x2+y2+z2x2−2xy+y2+y2−2yz+z2+z2−2xz+x2=x2+y2+z2x2−2xy+y2+y2−2yz+z2+z2−2xz+x2
=x2+y2+z23x2+3y2+3z2−x2−y2−z2−2xy−2yz−2xz=x2+y2+z23x2+3y2+3z2−x2−y2−z2−2xy−2yz−2xz
=x2+y2+z23(x2+y2+z2)−(x2+y2+z2+2xy+2yz−2xz)=x2+y2+z23(x2+y2+z2)−(x2+y2+z2+2xy+2yz−2xz)
=x2+y2+z23(x2+y2+z2)=13=x2+y2+z23(x2+y2+z2)=13
Vậy: K=13K=13
Ta có: x+y+z=0
\(\Leftrightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=0\)(1)
Ta có: \(K=\dfrac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\dfrac{x^2+y^2+z^2}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}\)
\(=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2-x^2-y^2-z^2-2xy-2yz-2xz}\)
\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x^2+y^2+z^2+2xy+2yz-2xz\right)}\)
\(=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
Vậy: \(K=\dfrac{1}{3}\)
\(K=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)
\(K=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2}=\dfrac{1}{3}\)
(x + y + z)2 – 2.(x + y + z).(x + y) + (x + y)2
= [(x + y + z) – (x + y)]2 (Áp dụng HĐT (2) với A = x + y + z ; B = x + y)
= z2.
x - y + z 2 + z - y 2 + 2(x – y + z)(y – z)
= x - y + z 2 + 2(x – y + z)(y – z) + y - z 2
= x - y + z + y - z 2 = x 2
\(\left(x+y-z\right)^2+2.\left(x+y-z\right).\left(z-y\right)+\left(y-z\right)^2=\left[\left(x+y-z\right)+\left(z-y\right)\right]^2=x^2\)
Sai đề.
(x-y+z)2 + (z-y)2 + 2.(x-y+z).(y-z)
= (x-y+z)2 + (y-z)2 + 2.(x-y+z).(y-z)
=[(x-y+z)+(y-z)]2
=(x-y+z+y-z)2
=x2
\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(z+x\right)\\z=-\left(x+y\right)\end{cases}}\)
\(\Rightarrow P=\frac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{\left[-\left(y+z\right)\right]^2+\left[-\left(z+x\right)\right]^2+\left[-\left(x+y\right)\right]^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{\left(y+z\right)^2+\left(z+x\right)^2\left(x+y\right)^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{-\left[\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=-1\)
hằng đẳng thức nha đổi vị trí tth]s 2 xuoong3 và 3 lên 2 ra rồi tự làm nha
(x-y+z)²+(z-y)²-2(x-y+z)(z-y)
= [(x−y+z)+(y−z)]2[(x−y+z)+(y−z)]2
= (x−y+z+y−z)2(x−y+z+y−z)2
= x2