Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(Q=\left(x-y\right)^2-4\left(x-y\right)\left(x+2y\right)+4\left(x+2y\right)^2\)
\(Q=\left(x-y\right)^2-2\cdot\left(x-y\right)\cdot2\left(x+2y\right)+\left[2\left(x+2y\right)\right]^2\)
\(Q=\left[\left(x-y\right)-2\left(x+2y\right)\right]^2\)
\(Q=\left(x-y-2x-4y\right)^2\)
\(Q=\left(-x-5y\right)^2\)
b) \(A=\left(xy+2\right)^3-6\left(xy+2\right)^2+12\left(xy+2\right)-8\)
\(A=\left(xy+2\right)^3-3\cdot2\cdot\left(xy+2\right)^2+3\cdot2^2\cdot\left(xy+2\right)-2^3\)
\(A=\left[\left(xy+2\right)-2\right]^3\)
\(A=\left(xy+2-2\right)^3\)
\(A=\left(xy\right)^3\)
\(A=x^3y^3\)
c) \(\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right)\)
\(=\left(x^3+6x^2+12x+8\right)+\left(x^2-6x^2+12x-8\right)-\left(2x^3+24x\right)\)
\(=x^3+6x^2+12x+8+x^2-6x^2+12x-8-2x^3-24x\)
\(=\left(x^3+x^3-2x^3\right)+\left(6x^2-6x^2\right)+\left(12x+12x-24x\right)+\left(8-8\right)\)
\(=0\)
a: =(x-y)^2-2(x-y)(2x+4y)+(2x+4y)^2
=(x-y-2x-4y)^2=(-x-5y)^2=x^2+10xy+25y^2
b: =(xy+2-2)^3=(xy)^3=x^3y^3
c: =x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x(x^2+12)
=24x+2x^3-2x^3-24x
=0
Bài 1:
\(a,6x^2-15x^3y\\ b,=-\dfrac{2}{3}x^2y^3+\dfrac{2}{3}x^4y-\dfrac{8}{3}xy\)
Bài 2:
\(a,=20x^3-10x^2+5x-20x^3+10x^2+4x=9x\\ b,=3x^2-6x-5x+5x^2-8x^2+24=24-11x\\ c,=x^5+x^3-2x^3-2x=x^5-x^3-2x\)
a) \(\left(x^5+4x^3-6x^2\right):4x^2\)
\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)
\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)
b)
Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)
c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)
= \(-x^3+\dfrac{3}{2}-2x\)
d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)
\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)
\(=x-4\)
(dùng hẳng đẳng thức thứ 7)
Bài 2 :
a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)
= 3x2 - 6x - 5x + 5x2 - 8x2 + 24
= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24
= -11x + 24
b) (x - y)(x2 + xy + y2) + 2y3
= x3 - y3 + 2y3
= x3 + y3
c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)
= (x - y)2 - 2(x - y)(x + y) + (x + y)2
= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2
Bài 1 :
a]= \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).
b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]
c]= -x3 -2x +\(\frac{3}{2}\).
d] = [ x3 - 64 ] = [ x2 + 4x + 16][ x- 4].
a) \(\left(2a-3\right)\left(a+1\right)-\left(a^2+6a+9\right):\left(a+3\right)\)
\(=\left(2a^2+2a-3a-3\right)-\left(a+3\right)^2:\left(a+3\right)\)
\(=2a^2-a-3-\left(a+3\right)\)
\(=2a^2-a-3-a-3\)
\(=2a^2-2a-6\)
b) \(\left(3x-5y\right)\left(-xy\right)^2-3x^2y^2+4x^2y^3\)
\(=\left(3x-5y\right)\cdot x^2y^2-3x^2y^2+4x^2y^3\)
\(=3x^3y^2-5x^2y^3-3x^2y^2+4x^2y^3\)
\(=3x^3y^2-x^2y^3-3x^2y^2\)
c) \(x\left(x-2\right)^2-\left(x+2\right)\left(x^2-2x+4\right)+4x^2\)
\(=x\left(x^2-4x+4\right)-\left(x^3+8\right)+4x^2\)
\(=x^3-4x^2+4x-x^3-8+4x^2\)
\(=\left(x^3-x^3\right)+\left(-4x^2+4x^2\right)+4x-8\)
\(=4x-8\)
a) A = (x - 3)(x² + 3x + 9) - (x³ + 3)
= x³ - 3³ - x³ - 3
= (x³ - x³) + (-27 - 3)
= -30
b) B = (2x + 1)(4x² - 2x + 1) - 8(x + 1/2)(x² - 1/2 x + 1/4)
= (2x)³ + 1³ - 8[x³ + (1/2)³]
= 8x³ + 1 - 8(x³ + 1/8)
= 8x³ + 1 - 8x³ - 1
= (8x³ - 8x³) + (1 - 1)
= 0
\(a,\left(2a-3\right)\left(a+1\right)+\left(a^2+6a+9\right):\left(a+3\right)\\ =2a^2-a-3+\left(a+3\right)^2:\left(a+3\right)\\ =2a^2-a-3+a+3\\ =2a^2\\ b,\left(3x-5y\right)\left(-xy\right)^2-3x^2y^2+4x^2y^3\\ =3x^3y^2-5x^2y^3-3x^2y^2+4x^2y^3\\ =3x^3y^2-3x^2y^2-x^2y^3\\ c,x\left(x-2\right)^2-\left(x+2\right)\left(x^2-2x+4\right)+4x^2\\ =x^3-4x^2+4x-x^3-8+4x^2\\ =4x-8\)
Rút gọn biểu thức:
a) A = x 2 (x - 2) - (x - 1)( x 2 + x + 1);
b) B = ( xy - 1 ) 2 - (xy - 1)(xy + 2).
a) Thực hiện phép nhân và hằng đẳng thức thu được
A = x 3 – 2 x 2 – ( x 3 – 1 3 ); rút gọn A = 1 – 2 x 2 .
b) Đặt (xy – 1) làm nhân tử chung ta được B = 3(1 – xy).
Mình nghĩ là phân tích đa thức
a)\(3x+2y+xy+6\)
\(=x\left(y+3\right)+2\left(y+3\right)\)
\(=\left(x+2\right)\left(y+3\right)\)
b)\(2x^2+3xy-2y^2-10x-5y+12\)
\(=2x^2+\left(3y-10\right)x-\left(2y^2+5y-12\right)\)
\(=\left[2x+\left(y-4\right)\right]\left(x+2y+3\right)\)
a) A = (x + 2)³ + (x - 2)³ - 2x(x² + 12)
= x³ + 6x² + 12x + 8 + x³ - 6x² + 12x - 8 - 2x² - 24x
= (x³ + x³) + (6x² - 6x² - 2x²) + (12x + 12x - 24x) + (8 - 8)
= 2x³ -2x²
b) B = (xy + 2)³ - 6(xy + 2)² + 12(xy + 2) - 8
= (xy + 2 - 2)³
= (xy)³
= x³y³