Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\frac{63y^3}{7y}}=\sqrt{9y^2}=\sqrt{\left(3y\right)^2}=\left|3y\right|=3y\)( y > 0)
Ta có: \(B=\left(\dfrac{2x+1}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{x}{x+\sqrt{x}+1}\right)\)
\(=\dfrac{2x\sqrt{x}-2x+\sqrt{x}-1-x\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x}{x+\sqrt{x}+1}\)
\(=\dfrac{x\sqrt{x}-2x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(x+1\right)\cdot\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2\cdot\left(x-\sqrt{x}+1\right)}\)
\(\(A=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)\)
\(\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)\)
\(\(=\frac{\left(\sqrt{x}-1\right).\left(\sqrt{x}+2\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}}{\sqrt{x}+1}\)\)
\(\(=\frac{x+2\sqrt{x}-\sqrt{x}-2-\left(x+\sqrt{x}-2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}}{\sqrt{x}+1}\)\)
\(=\frac{x+2\sqrt{x}-\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2}{x-1}\)
Vậy \(A=\frac{2}{x-1}vs\left(x\ge0;x\ne1\right)\)
_Ko chắc , đag bận nên còn phần b , tí mk giải nối_
_Minh ngụy_
\(ĐK:x\ge0;x\ne1\)
\(a,A=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right):\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)\sqrt{x}}\)
\(=\frac{2}{x-1}\)
Vậy với \(x\ge0;x\ne1\)thì \(A=\frac{2}{x-1}\)
\(b,\)Ta có:\(A=\frac{2}{x-1}\)
Để A nhận giá trị nguyên \(\Leftrightarrow2⋮x-1\)
Vì \(x\in Z\Rightarrow x-1\inƯ_{\left(2\right)}=\left\{\pm1;\pm2\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\left(TM\right)\) | \(0\left(TM\right)\) | \(3\left(TM\right)\) | \(-1\left(L\right)\) |
Vậy để A nhận giá trị nguyên \(x\in\left\{2;0;3\right\}\)
ta có
\(A=\frac{\sqrt{x}-\sqrt{x-1}-\left(\sqrt{x}+\sqrt{x-1}\right)}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}-\frac{0}{1-\sqrt{x}}\)
\(=-\frac{2\sqrt{x-1}}{x-\left(x-1\right)}=-2\sqrt{x-1}\) dễ thấy \(A\le0\) với mọi x
\(a,ĐK:x\ne\pm1;x\ne0\\ M=\dfrac{1-x+2x}{\left(1+x\right)\left(1-x\right)}:\dfrac{1-x}{x}\\ M=\dfrac{x+1}{\left(x+1\right)\left(1-x\right)}\cdot\dfrac{x}{1-x}=\dfrac{x}{\left(1-x\right)^2}\\ b,ĐK:x\ge0;x\ne4\\ N=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ N=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
Tất cả đều phải tìm điều kiện
\(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{3-\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)
\(=\frac{3+\sqrt{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)
a, \(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt[]{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)
\(=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)
`(sqrt{24}+sqrt{75}-3)/(2sqrt{14}+sqrt{175}-sqrt{21})`
`=(sqrt3(sqrt8+sqrt25-sqrt3))/(sqrt7(2sqrt2+sqrt{25}-sqrt3))`
`=sqrt3/sqrt7`
`=sqrt{3/7}`
`**sqrt8=sqrt{4.2}=2sqrt2`
\(\dfrac{\sqrt{24}+\sqrt{75}-3}{2\sqrt{14}+\sqrt{175}-\sqrt{21}}=\dfrac{2\sqrt{3}.\sqrt{2}+5\sqrt{3}-3}{2\sqrt{2}.\sqrt{7}+5\sqrt{7}-\sqrt{3}.\sqrt{7}}\)
\(=\dfrac{\sqrt{3}\left(2\sqrt{2}+5-\sqrt{3}\right)}{\sqrt{7}\left(2\sqrt{2}+5-\sqrt{3}\right)}=\dfrac{\sqrt{3}}{\sqrt{7}}=\dfrac{\sqrt{21}}{7}\)
\(B=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{12}+\sqrt{20}}=\dfrac{\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}}{\sqrt{12}+\sqrt{20}}\\ B=\dfrac{\sqrt{3}+\sqrt{5}}{\sqrt{12}+\sqrt{20}}=\dfrac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{20}-\sqrt{12}\right)}{8}\\ B=\dfrac{2\sqrt{15}-6+10-2\sqrt{15}}{8}=\dfrac{4}{8}=\dfrac{1}{2}\)
Tick nha 😘
\(B=\dfrac{\sqrt{8+2\sqrt{15}}}{\sqrt{12}+\sqrt{20}}=\dfrac{\sqrt{5}+\sqrt{3}}{2\left(\sqrt{5}+\sqrt{3}\right)}=\dfrac{1}{2}\)
\(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)
\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
\(=4\sqrt{b}-5\sqrt{10b}\)
\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{5-2\sqrt{5}+1}+\sqrt{5+2\sqrt{5}+1}\)
\(\sqrt{2}A=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(\sqrt{2}A=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
\(\Rightarrow A=\sqrt{10}\).
\(A=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(\sqrt{2}A=\sqrt{2}\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)\)
kĩ thuật nhân thêm \(\sqrt{2}\)( TH khi ko thể biến biểu thức trong căn thành HĐT, mà mình nhớ cách này được học đầu năm rồi mà ? )
\(=\sqrt{2}\sqrt{3-\sqrt{5}}+\sqrt{2}\sqrt{3+\sqrt{5}}\)
\(=\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)( đưa căn 2 vào căn nhớ bình phường nhé ! )
\(=\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}+1}+\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}+1}\)
\(=\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=\left|\sqrt{5}-1\right|+\left|\sqrt{5}+1\right|\)
Vì 1 < 5 hay \(\sqrt{1}< \sqrt{5}\Rightarrow\sqrt{5}-1>0\)
\(\sqrt{5}>0;1>0\Rightarrow\sqrt{5}+1>0\)
\(=\sqrt{5}-1+\sqrt{5}+1=2\sqrt{5}\)
Vậy \(\sqrt{2}A=2\sqrt{5}\Rightarrow A=10\)