Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D=(x2+x+1)(x2-x+1)(x4-x2+1)(x8-x4+1)
\(=\left(\left(x^2+1\right)^2-x^2\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right).\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\left(x^8-x^4+1\right).\)
\(=\left(\left(x^4+1\right)^2-x^4\right)\left(x^8-x^4+1\right).\)
\(=\left(x^8+x^4+1\right)\left(x^8-x^4+1\right)=\left(x^8+1\right)-x^8=x^{16}+x^8 +1\)
a) (2x+1)^2+2(4x^2-2)+(2x-1)^2=4x2+4x+1+8x2-4+4x2-4x+1=16x2-2
Mình làm câu c trước để bạn hình dung ra nhé, câu a tương tự:
c) \(7\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(8-1\right)\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left[\left(2^3-1\right)\left(2^3+1\right)\right]\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(2^6-1\right)\left(2^6+1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(2^{12}-1\right)\left(2^{12}+1\right)\left(2^{24}+1\right)\)
\(=\left(2^{12}-1\right)\left(2^{24}+1\right)\)
\(=2^{36}-1\)
b) \(\left(x^2-x+4\right)\left(x^2+x+1\right)\left(x^2-1\right)\)
\(=\left(x^2.x^2.x^2\right).\left(-x+4+x+1+\left(-1\right)\right)\)
\(=x^8.\left(-4\right)\)
\(a,\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1\)
Rút gọn biểu thức
a).x(2x2-3)-x2(5x+1)+x2
b).3x(x-2)-5x(1-x)-8(x2-3)
c).1/2x2(6x-3)-x(x2+1/2)+1/2(x+4)
\(=\left(x^2-3x+1+3-x-x\right)^2\)
\(=\left(-4x+4\right)^2\)
\(=x^8-3x^4+3x^2-1-x^8+1=-3x^4+3x^2\)
(x2 - 1)3 - (x2 - 1)(x4 + x2 + 1)
= (x4 - 2x2 + 1 - x4 - x2 - x)(x2 - 1)
= (-3x2 - x + 1)(x2 - 1)
= -3x4 + 3x2 - x3 + x + x2 - 1
= -3x4 + 4x2 - x3 + x - 1